
Verification of P4 Programs in Feasible Time
using Assertions

Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos
Institute of Informatics

UFRGS

ABSTRACT
Recent trends in software-defined networking have extended net-
work programmability to the data plane. Unfortunately, the chance
of introducing bugs increases significantly. Verification can help
prevent bugs by assuring that the program does not violate its re-
quirements. Although research on the verification of P4 programs
is very active, we still need tools to make easier for programmers to
express properties and to rapidly verify complex invariants. In this
paper, we leverage assertions and symbolic execution to propose
a more general P4 verification approach. Developers annotate P4
programs with assertions expressing general network correctness
properties; the result is transformed into C models and all possi-
ble paths symbolically executed. We implement a prototype, and
use it to show the feasibility of the verification approach. Because
symbolic execution does not scale well, we investigate a set of tech-
niques to speed up the process for the specific case of P4 programs.
We use the prototype implemented to show the gains provided by
three speed up techniques (use of constraints, program slicing, par-
allelization), and experiment with different compiler optimization
choices. We show our tool can uncover a broad range of bugs, and
can do it in less than a minute considering various P4 applications.

CCS CONCEPTS
• Networks → Programmable networks; • Software and its
engineering → Software verification and validation;

KEYWORDS
P4; Verification; Programmable Data Planes
ACM Reference Format:
Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos.
2018. Verification of P4 Programs in Feasible Time using Assertions. In
The 14th International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’18), December 4–7, 2018, Heraklion, Greece. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3281411.3281421

1 INTRODUCTION
Data plane programmability allows operators to quickly deploy new
protocols and develop network services. Through programming
languages such as P4 [2], it is possible to specify in a few instructions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’18, December 4–7, 2018, Heraklion, Greece
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00
https://doi.org/10.1145/3281411.3281421

which packet headers should be manipulated, and how, by different
forwarding devices in the infrastructure. Despite the flexibility, this
paradigm also increases the chance of introducing bugs into the
network due to incorrect implementations.

Testing/debugging, verification and enforcement are comple-
mentary approaches that can help solve this problem. During devel-
opment, data plane programs can be debugged and tested, providing
a wide range of inputs and checking if the corresponding outputs
match the expected behavior. Verification, on its turn, can be used
on programs to find bugs that would violate any of the properties
stated by their requirements, including bugs that are hard to re-
produce in testing. Lastly, with enforcement, the data plane can be
monitored during execution to trap and block actions that would
result in property violations.

In this paper, we focus on verification: we propose an approach to
model and check (at compile time) general security and correctness
properties of P4 programs, and implement it in a tool that provides
network verification in feasible time. Several approaches have been
developed to check if a given fixed-function (non-P4) data plane
satisfies a set of intended properties [8, 25, 29, 32]. Moreover, verify-
ing P4-programmed data planes is an active area of research, with
recent projects proposing verification techniques based on SMT
solving [24, 27] and custom symbolic execution [33]1. In contrast,
this work shows how to efficiently verify P4 programs leveraging a
popular, off-the-shelf symbolic execution engine [4].

We propose an expressive assertion language (highly influenced
by P4) that enables programmers to specify their intended prop-
erties by annotating their P4 code. Once annotated, a program is
symbolically executed, with assertions being checked while all its
paths are traversed. Given that the time taken to perform the sym-
bolic execution grows exponentially with the program complexity,
we show how a variety of speed up techniques can be employed to
reduce the verification time and number of executed instructions.
These techniques consist of using annotations in code to constrain
the paths to be traversed according to properties and/or protocols
of interest, program slicing to reduce the complexity of the model
under verification, and parallelization of symbolic execution. Be-
sides, we experiment with code optimization features offered by
current compilers.

To evaluate our approach, we built a prototype using KLEE [4]
and the P4 Reference Compiler [20] for the current language version,
P416. We applied it to four real P4 applications collected from the
literature: Switch [21], NetPaxos [5], Dapper [11], and DC.p4 [31].
Our results show that the proposed verification process can uncover
a broad range of bugs either in the data plane program itself or in its
control plane configuration. A detailed performance analysis also
shows that, although the verification time grows exponentially with

1[24, 33] were independently developed at the same time as this work.

73

https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#functional
https://www.acm.org/publications/policies/artifact-review-badging/#reusable

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos

the number of tables and assertions, pragmatically our approach
needs less than a minute to verify various P4 applications [6, 10, 11,
13, 23, 30].

This paper presents the following contributions:
(1) a language for specifying general correctness and security

properties of P4 programs;
(2) an approach for verifying properties of P4 programs using

assertion checking and symbolic execution, and its imple-
mentation in a tool;

(3) investigation of a set of techniques to speed up the execution
of the verification tool;

(4) examples of the tool being applied to find bugs in P4 appli-
cations proposed in the literature;

(5) a detailed performance evaluation of the tool implementing
our verification approach.

2 MOTIVATING EXAMPLES
Bugs in P4 programs can originate from a myriad of sources (e.g.
erroneous assignments, poor logic or control misconfiguration)
and have different consequences depending on the program. Next,
we present two motivating examples to illustrate how bugs and
their effects can be specific to each P4 implementation. To allow
illustration in limited space, we use simplistic bugs from likely
copy-paste mistakes.

Code circumvention. Figure 1 shows an example of a vulner-
ability in a P4 program. This code snippet specifies a packet pro-
cessing pipeline containing three match-action tables (udp_table,
tcp_table and tcp_acl_table), invoked inside a L4 control block.
Clearly, udp_acl_table should be applied to UDP traffic, but ac-
cidentally tcp_acl_table was used instead, allowing UDP packets
to bypass the filtering mechanism. Even though correcting this
problem would be simple, finding the problem may not be trivial
in large and complex programs.

 1 control L4() {
 2 apply {
 3 if (headers.ip.nextHeader == TCP) {
 4 tcp_table.apply();
 5 tcp_acl_table.apply();
 6 } else if (headers.ip.nextHeader == UDP) {
 7 udp_table.apply();
 8 tcp_acl_table.apply();
 9 }
10 }
11 }

Figure 1: Code circumvention bug allows UDP to pass
through

Controlmisconfiguration.Many faults in networks arise from
bugs in forwarding rules (i.e., control plane configurations). In this
sense, Figure 2 shows an example of a data plane program whose
tables are erroneously configured at compile-time. Themirror table
clones packets based on their output port (line 2), setting a new port
for cloned packets based on its action parameters. In this example,
one of the forwarding rules is assigning the output port of the
cloned packet to the same value as the original packet (line 8). As a
consequence, both packets will be sent to the receiver.

As hinted earlier, these bugs could be identified and prevented
during development by verifying correctness properties of interest.

 1 table mirror {
 2 key = { metadata.egress_port : exact; }
 3 actions = { NoAction; clone_packet; }
 4 default_action = NoAction;
 5
 6 const entries = {
 7 0x00000001 : clone_packet(0x00000002);
 8 0x00000002 : clone_packet(0x00000002);
 9 }
10 }

Figure 2: Control misconfiguration bug because rule in line
8 clones packets to the same egress port

Figure 3: Overview of the verification process

3 P4 PROGRAM VERIFICATION
We first present an overview of our approach, based on Figure 3.
There are two key ideas behind it: (i) using assertions for spec-
ifying properties about P4 programs; and (ii) verifying models
derived from annotated programs. The former allows programmers
to easily express their intended properties, while the latter enables
programs to be automatically verified. Using models to represent
real programs is a common practice in the verification literature
[9, 25, 29, 34].

The P4 developer first annotates the code with assertions ex-
pressing general properties of interest. These properties can reflect
a network security policy or simply represent the expected program
behavior. Once annotated, the P4 program is translated into a C-
basedmodel.During this process, forwarding rules can be optionally
added as input to the translator for restricting the verification to a
given network configuration. The generated model is then checked
by a symbolic execution engine, which tests all execution paths
looking for assertion failures. If no assertion is violated during this
process, the P4 program is considered correct with respect to the an-
alyzed properties. Otherwise, the violations are reported, allowing
the developer to correct the program. In the following subsections,
we describe in detail each step of the verification process.

74

Verification of P4 Programs in Feasible Time using Assertions CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

3.1 Specifying assertions
Developers use assertions to express properties of P4 programs. An
assertion language is needed to capture packet processing behaviors
and facilitate the task of specifying complex networking properties.
This includes reasoning about packet formation, forwarding, and
control flow properties, whose behavior may depend not only on
the state of the program variables at a specific location, but also on
how the program manipulates the packets at other points of the
code. To accomplish this goal, we introduce an assertion language
using the code annotation mechanism available in P4. We define
an annotation called assert, enabling the developer and/or a third
party to express/interpret properties in an intuitive manner.

Figure 4 summarizes the grammar of the assertion language.
It resembles C-style assertions found in traditional programming
languages, lowering the barrier to adoption. However, our concept
of assertion is more general and includes both location-restricted
and location-unrestricted elements. A location-restricted element is
one that tests the value of a program variable where the assertion
is specified, as in traditional programming languages like C or Java.
The location-unrestricted ones, in contrast, apply to the entire data
plane program. They can be used for example to guarantee higher
level properties that the program is expected to satisfy, such as
isolation – asserting certain packets would never be forwarded to
certain ports, or to guarantee that some actions will be taken on
certain headers. The idea was inspired by Beckett et al [1].

b ::= v
 | f
 | m
 | !b
 | b || b
 | b && b
 | b == b
 | b != b
 | i >= i
 | i <= i
 | i < i
 | i > i
 | i == i
 | i != i

m ::= forward()
 | traverse_path()
 | constant(f)
 | if(b, b, [b])
 | extract_header(h)
 | emit_header(h)
i ::= v
 | f
 | i * i
 | i / i
 | i % i
 | i + i
 | i - i

Figure 4: Assertion language grammar

Syntactically, each assertion is composed of a boolean expression,
which may include primitive methods. Allowed methods are for-
ward, traverse_path, constant, if, extract_header, and emit_header.
Both expressions and methods can operate over one or more values,
header fields or headers. There is no syntax difference between
location-restricted and location-unrestricted elements. Semanti-
cally, each assertion represents a boolean that should evaluate to
true or false, where values and header fields evaluate to true if
they are non-zero and false otherwise. Expressions can be integer
or boolean, and in both cases with the same semantics as their
counterparts in the P4 language.

The methods work as follows. if(b1, b2, [b3]) is similar to tra-
ditional conditional statements: if expression b1 is true, then ex-
pression b2 will be evaluated, otherwise the alternative b3 will be
evaluated). This is the only location-restricted method, with all
other ones being unrestricted. traverse_path() indicates if a given

 1 ...
 2 control TopPipe(inout Parsed_packet headers,
 3 out OutControl outCtrl) {
 4 ...
 5 action Drop() {
 6 outCtrl.outputPort = DROP_PORT;
 7 @assert("if(traverse_path(), !forward())");
 8 }
 9 action Set_dmac(EthernetAddress dmac) {
10 headers.ethernet.dstAddr = dmac;
11 }
12 table dmac {
13 key = { nextHop : exact; }
14 actions = { Drop; Set_dmac; }
15 default_action = Drop;
16 }
17 apply {
18 ...
19 dmac.apply();
20 ...
21 @assert("if(forward(), headers.ip.ttl > 0)");
22 }
23}

Figure 5: Example of an annotated P4 program

structure in the program (e.g., an action) will be eventually tra-
versed before program execution ends. constant(f) is true if field
f will not change from the assertion location onwards, i.e., until
the program terminates. forward() returns true when the packet
will not be dropped at the end of the program. extract_header(h) is
true if a header h has been, or will be, extracted from the packet.
Finally, emit_header(h) returns true if packet will be transmitted
with header h.

The methods presented in the language enable the specification
of types of properties that would be either difficult or impossible to
express using only traditional assertions. The addition of forward()
enables the expression of forwarding properties, which are essential
to data plane programs. traverse_path() allows reasoning about the
control flow of the source code. constant() facilitates checking the
integrity of variables across the program. Both extract_header() and
emit_header() allow the expression of packet formation properties
at the parser and deparser level, respectively. Finally, if() assists
the process of combining methods and expressions in a conditional
expression.

Figure 5 shows an example of an annotated P4 program, with
assertions in bold. Due to space restrictions, only the most relevant
parts of the program are displayed. This program describes a packet
processing pipeline with a single table (dmac), which is instantiated
inside the TopPipe control block. Each entry of this table can invoke
one of two actions (Drop() or Set_dmac()). The assertions aim to
verify that: (i) packets marked to drop are never forwarded (line
7), and (ii) only packets with TTL greater than zero are forwarded
(line 21). The two assertions contain both location-unrestricted
elements (e.g., forward() captures the state of the program at the end
of its execution) and location-restricted ones (e.g., the expression
headers.ip.ttl>0 tests the value of headers.ip.ttl at the point in which
the assertion is found).

75

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos

 1 header ethernet_t {
 2 bit<48> dstAddr;
 3 bit<48> srcAddr;
 4 bit<16> etherType;
 5 }
 6

typedef struct {
 uint8_t isValid : 1;
 uint64_t dstAddr : 48;
 uint64_t srcAddr : 48;
 uint32_t etherType : 16;
} ethernet_t;

P4 Program C Model

7 table forward_table() {
8 actions = {
9 forward1;

10 NoAction;
11 }
12 key = {
13 hdr.ethernet.dstAddr: exact;
14 }
15 size = 32;
16 default_action = NoAction();
17 }

void forward_table() {
 int symbol;
 make_symbolic(symbol);
 switch(symbol) {
 case 0: forward(); break;
 default: NoAction(); break;
 }
}

18 action forward(bit<9> port) {
19 standard_metadata.egress_spec = port;
20 }
21
22

void forward() {
 uint32_t port;
 make_symbolic(port);
 standard_metadata.egress_spec = port;
}

23 control ingress(inout headers hdr,
24 inout metadata meta) {
25 apply {
26 forward_table.apply();
27 }
28 }
29

// global variables
headers hdr;
metadata meta;

void ingress() {
 forward_table();
}

Header

Table

Action

Control
Block

Parser

Parsed_packet hdr;

void TopParser() {
 make_symbolic(hdr);
 start();
}

void start(){
 parse_ethernet();
}

void parse_ethernet() {
 hdr.ethernet.isValid = 1;
 switch(hdr.ethernet.etherType){
 case 0x0800: parse_ipv4(); break;
 default: accept(); break;
 }
}

30 parser TopParser(packet_in b,
31 out Parsed_packet hdr) {
32
33 state start {
34 transition parse_ethernet;
35 }
36
37 state parse_ethernet {
38 b.extract(hdr.ethernet);
39 transition select(hdr.ethernet.etherType) {
40 0x0800: parse_ipv4;
41 default: accept;
42 }
43 }
44 }
45
46
47

Comments

Header fields are mapped to struct members.
The C struct also contains a header validity field.

Tables are modeled as C functions. In this
example, the table rules are unknown. A symbolic
variable is used to make the symbolic execution
traverse both actions.

Actions are mapped to C functions. The action
parameters are modeled with symbolic values when
forwarding rules are unknown.

Control blocks correspond to functions in the
C model. Their parameters are mapped to global
variables in the model.

A function is created in the model for each parser
and parser state. The Parsed_packet parameter is
made into a global variable in the C model.

Figure 6: Example of P4 to C translation for the main P4 structures

3.2 Constructing C models
Once a P4 program is annotated, it is translated to an equivalent
model expressed in C language. This section describes how the
main P4 structures, namely headers, tables, actions, parsers, con-
trol blocks, and external objects, are translated into the C model.
Figure 6 (in the next page) summarizes the translations by means
of examples. Implementation details appear in ♯3.4.

Headers. Given their similar representations, P4 headers can be
easily modeled by structs in C. Each header field is mapped to a
struct member, and bit fields in C are used to keep the matching
between the size of the header field and the size of its corresponding
member in the generated struct. Each basic type in P4 is mapped
to a corresponding type in C, considering its declared size. Fields
with more than 64 bits can be modeled using bit arrays.

Tables. Each forwarding table in a P4 program is modeled as
a function in C. Functions created from tables are constructed in

different ways depending on whether the forwarding rules are
supplied to the translator or not. If the rules are provided, thematch
fields in the P4 table are tested against their corresponding rule
values using the specified matching approach (e.g., exact, ternary
or longest-prefix match). Otherwise, the decision of which action
to execute is made based on a symbolic value specially declared
to force the creation of multiple execution paths by the symbolic
engine (one for each action listed in the table). To avoid conflicts
caused by tables from different scopes having the same name, we
append an id to their names. This solution is also applied in any
situation where name conflicts may be an issue (e.g. action names).

Actions. Like tables, actions are modeled as C functions. The
action parameters should be translated taking into account the
table modeling strategy. When the forwarding rules are unknown,
the action parameter values are also unknown. If so, the action
parameters are treated as symbolic variables. Otherwise, the values
specified by the rules are assigned to the corresponding parameters.

76

Verification of P4 Programs in Feasible Time using Assertions CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Control Blocks. Since a control block in P4 also includes its
action and table declarations, each block is translated to multiple
C functions. Local scope variables in control blocks are declared
as global variables in the model to allow them to be referenced by
any table and action in the block. Given that the global variables
are uniquely named in the model, and that they are not reused
across different packets, this modeling approach does not cause
side effects on the verification result. Finally, the block body usually
contains invocations to tables and actions, which are modeled as
their corresponding C function invocations.

Parser. Parsers are translated to multiple C functions: one for
the parser declaration itself and another for each of its states. Since
local parser parameters and variables can be accessed by any state
in its scope, both structures are modeled as global variables in C.
Parser output parameters, which represent the packet headers, are
modeled as symbolic variables, as they correspond to inputs in the
model.

Assertions. Each assertion element is modeled in C using a par-
ticular approach. Numeric and boolean expressions, as well as the
if()method, are directly translated to their equivalent statements in
C. To model location-unrestricted methods, we use boolean values
that are set at different places depending on the method, and tested
when getting to its final state.

To model methods extract_header(), emit_header(), and tra-
verse_path(), a global boolean value is created for each one of
their occurrences in the P4 program. Such variables assume an
initial false value, and are assigned to true at different model loca-
tions depending on its corresponding method. In occurrences of
extract_header(x), the assignment is made just after an extract()
method invocation, which receives the header x as a parameter
in the P4 program. Similarly, the assignment corresponding to
emit_header(x) is made immediately after an emit() invocation (as-
sociated to the packet_out basic type) containing header x as a
parameter. For traverse_path(), the assignment occurs just before
the assertion that declares it. Method forward() is modeled with
a single boolean value initially set to true. Its value is assigned to
false inside the drop action and reject parse state. constant(f) is
translated by storing the field f in a C variable right after (or before)
an assertion, and testing if the variable value remains the same at
the end of the symbolic path.

External objects. This type of structure is specific to each for-
warding device, and P4 programs only interact with their interfaces.
For this reason, the behavior of each external object should be
previously known. In practice, this means integrating its corre-
sponding model into the translator by using libraries, for example.
This limitation is inherent to the design of P4, which consists of
both architecture-dependent and architecture-independent code. In
this work, we support the external objects necessary to translate the
examples presented in ♯5 (e.g. counters and meters of the standard
architecture).

3.3 Symbolically executing program models
After being generated by the process described in the previous sec-
tion, the C model of a P4 program is verified by a symbolic engine.
The symbolic execution of a program requires that all its possible

control flows (i.e., its execution paths) are evaluated through sym-
bolic input variables. To this end, the implementation described in
this paper uses the KLEE symbolic engine [4].

Essentially, P4 programs describe how a data packet should be
processed when entering a forwarding device, potentially leading
to the emission of an output packet. In this scenario, the incoming
packet headers entering the device are treated as inputs to themodel
and thus are always assigned to symbolic values. The number of
execution paths of a P4 program, in turn, is essentially given by its
packet processing pipeline structure. Whenever a table can only be
accessed under some condition (e.g., depending on the used proto-
col), a new execution path is created. The same happens whenever
multiple actions can be invoked by the same table, generating a
new branch for each possibility. This leads to the “path explosion
problem”, as the number of paths increases exponentially with pro-
gram size. In ♯4, we investigate approaches to speed up symbolic
execution in the specific context of our proposal, P4 programs.

3.4 Prototype implementation
We have prototyped our approach in a tool to show its feasibility
and to investigate the gains in performance given by different speed
up strategies. The tool uses a set of Python and shell scripts, and
is based on the KLEE symbolic execution engine and the LLVM
Compiler Infrastructure [22].

As shown in Figure 3, the tool first converts the annotated P4
program to its JSON representation, and it does so using the refer-
ence compiler for P416 provided by the P4 Language Consortium. It
then translates the JSON representation (a DAG) to a corresponding
model in C language, as detailed in ♯3.2. The implementation of
the translation process is straightforward and takes approximately
950 lines of Python code. The C model is symbolically executed by
KLEE, which first uses the LLVM compiler (version 3.4) to trans-
late the C program to a corresponding LLVM assembly language
representation.

We make the source code and data sets used in this evalua-
tion publicly available2. As such, the tool may be used by other
researchers to reproduce our results (see ♯5).

4 SPEEDING UP P4 VERIFICATION
Because our approach is based on symbolic execution, we inherit
both its benefits and its limitations, including the path explosion
problem. While many P4 programs currently found in the literature
are fairly small [6, 10, 11, 13, 23, 30], real-world P4 programs are ex-
pected to become larger and more intricate, specially when having
to deal with several protocols (e.g. programs DC.p4 and Switch.p4).

To address this limitation, we investigate optimization tech-
niques to speed up our verification tool. The number of paths to be
traversed in a single execution can be reduced by means of packet
and control flow constraints and program slicing, and implicitly
by means of compiler optimizations. The paths that still need to
be traversed can be examined concurrently, with advantages when
executing on top of a parallel architecture.

2https://github.com/gnmartins/assert-p4

77

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos

4.1 Packet and control flow constraints
During the verification process, a developer may be interested in the
verification of properties pertaining only to certain types of packets
or control flows. An example is a P4 program that supports both
TCP and UDP, but a developer needs to check properties related
to UDP only. To avoid symbolically executing non-relevant paths
(in the example, TCP ones), we propose to add packet and control
flow constraints to the verification process, to “direct” the symbolic
execution to the paths of interest while ignoring the others.

We implemented this strategy by allowing P4 programs to be
annotated with assumptions. We define the annotation assume(),
which receives as argument a boolean value expected to be true.
This annotation can be directly translated to a klee_assume()method
in the C model. The method belongs to the KLEE API and is respon-
sible for implementing the assumption within the KLEE symbolic
engine.

To illustrate this approach, consider a P4 program that imple-
ments multiple L3 protocols, but the properties of interest concern
only the IPv4 protocol. This example is shown in Figure 7. The
annotated P4 code is shown in Figure 7(a). It consists of the parser
state responsible for reading the Ethernet bits of the packet, which
indicate the L3 protocol in the packet. By assuming that (the type
of) the next protocol is IPv4, the symbolic execution will ignore
the other paths, and either traverse the parse_ipv4 parser state or
halt if the assumption is impossible to hold. Figure 7(b) shows how
the assumption and transition statements are translated to the C
model.

 1 state parse_ethernet {
 2 b.extract(hdr.ethernet);
 3 @assume(hdr.ethernet.etherType == IPV4);
 4 transition select(hdr.ethernet.etherType) {
 5 IPV4 : parse_ipv4;
 6 IPV6 : parse_ipv6;
 7 ICMP : parse_icmp;
 8 ...
 9 }
10 }

(a) P4 code annotated with a constraint

1 klee_assume(hdr.ethernet.etherType == IPV4);
2 parse_ipv4();

(b) Constraint translated to the C model

Figure 7: Constraint example

4.2 Program slicing
To verify an assertion, the verification process symbolically exe-
cutes the whole P4 program. However, the assertion result may
depend only on a subset of the program instructions. Thus, the
verification procedure spends unnecessary time processing paths
that do not affect the outcome. This creates the opportunity to use
a program slicing technique [36], which is used to automatically re-
move the subset of a program that does not affect a selected criteria,
such as the value of a variable in a given point of the code.

To illustrate, assume a developer annotates a P4 program with a
set of assertions that depend only on the TCP destination port (the
selection criteria). The slicing algorithm in this case can automati-
cally generate a “program slice” that contains only parsers, actions,
tables, and control flow instructions that can directly or indirectly
modify the value of the TCP destination port. This simplifies the
program, removing the parts of the code related to other protocols,
and even the sections associated with TCP that do not modify the
destination port.

Slicing could be performed on the C model or P4 program. We
decide for the former, as it allows the use of existing program slicing
tools. To this end, we incorporate the Frama-C [17] slicing plug-in
into the verification tool, applying Frama-C before symbolically
executing the C model.

4.3 Compiler optimizations
Our approach relies on KLEE symbolically executing a LLVM as-
sembly language representation of the C code, which itself is a
representation of the P4 data plane program. Both KLEE and the
LLVM compiler support optimization passes. These can be con-
trol flow graph simplifications, which can remove dead code and
merge blocks of instructions, as well as global variable optimization,
which marks unchanged variables as constant and removes unused
variables. These passes can alter the source code in order to make
it more efficient, potentially reducing the symbolic execution time.

Given the expected performance gains from compiler optimiza-
tion passes, we experiment with these parameters (using the com-
piler as a black box) tomeasure how optimizations affect verification
time of the generated model.

4.4 Parallelization
Even though the branches of symbolic execution could be traversed
concurrently, KLEE does not take advantage of parallelization.
Cloud9 [3] allows KLEE to use multiple processing elements while
symbolically executing any C code3. We follow a different approach,
and propose a simple parallelization strategy that is specific to P4
programs.

The strategy consists of dividing themodel into submodels, which
are statically generated from decision points (e.g. if and switch). One
submodel is created for each branch, and run via a concurrent KLEE
process. Figure 8 exemplifies this process with the corresponding
code fragments, with the original model and its two submodels
shown respectively in Figures 8(a), 8(b) and 8(c). In each submodel
a value is assumed for the condition and only its corresponding
instructions are executed. The submodels generated are completely
independent and thus can be executed concurrently, in any order.
If multiple processing elements are available in the underlying
hardware, the procedure can be repeated on submodels to increase
the degree of concurrency.

To maximize the performance gains of parallelization, we should
minimize the maximum height of the execution trees of all sub-
models. This is so because the longest path is the one that will
take the most time to traverse. Since the symbolic execution tree is

3the tool was discontinued in 2013.

78

Verification of P4 Programs in Feasible Time using Assertions CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

1 if(hdr.ethernet.etherType == IPV4){
2 parse_ipv4();
3 } else {
4 accept();
5 }

(a) Original model

1 klee_assume(hdr.ethernet.etherType == IPV4);
2 parse_ipv4();

(b) Submodel with IPv4 packet

1 klee_assume(hdr.ethernet.etherType != IPV4);
2 accept();

(c) Submodel with non-IPv4 packet

Figure 8: Example of submodel generation

unknown beforehand, it cannot be used to find the optimal solu-
tion. Therefore, we propose a heuristic based on the anatomy of P4
programs to partition the model.

Decision points that occur earlier in the program have more
chances of being part of feasible paths, as they require less condi-
tions to be traversed. In the case of a P4 program, initial decision
points are typically found at the parser. Our heuristic then starts
by creating the submodels from these first conditions seen by the
parser. Once the first set of submodels is generated by this strategy,
further divisions may not be as efficient because they have increas-
ing chances of generating submodels on branches of unreachable
paths. Alternatively, decision points associated with tables are ap-
propriate candidates to submodel creation, since packets that tra-
verse the longest paths usually pass through P4 tables after being
accepted by the parser. In this case, each action in a table is traversed
using a different submodel. The heuristic creates submodels, before
any processing starts, by applying both approaches (parser and
table branches). Once all the submodels have been generated, they
are dynamically assigned (in arbitrary order) to any idle processing
elements.

5 EVALUATION
Earlier on we described the approach and how it was implemented
in a prototype, followed by strategies to speed up the verification.
We used the prototype to perform experiments and show that our
approach: (i) can detect a broad spectrum of bugs and policy vio-
lations in programmable data planes; (ii) allows the specification
(and proof) of general correctness and security properties of P4
programs; (iii) can be optimized with the techniques presented;
(iv) is efficient even for relatively complex P4 programs and control
configurations.

All experiments have been performed using a Linux virtual ma-
chine (kernel version 4.8.0) with four 3 GHz cores and 16 GB of
RAM.

5.1 Bug finding
First, we demonstrate the effectiveness of our proposal in finding
bugs and policy violations in programmable data planes. We use
assertions to find bugs in four recent P4 applications, and confirm
manually examining the source codes.

Dapper [11]: Dapper is a data plane performance diagnosis
tool that infers TCP bottlenecks by analyzing packets in real time.
We placed a set of basic assertions at the beginning of the ingress
control block, and via assertion if(ipv4.ttl == 0, !forward()), found
that Dapper can forward IPv4 packets even when the field TTL is
zero. By manual inspection, we noticed that even though the TTL
field is decremented as expected, its value is never checked before
forwarding. Because of this bug, while debugging a network with a
loop, Dapper-based devices could keep forwarding packets forever.
The prototype encountered this bug in less than a second.

NetPaxos [5]: NetPaxos is a network-based implementation of
the Paxos consensus protocol. There are two different types of P4
programs in this application, one for Leaders/Coordinators and an-
other for Acceptors. All the other actors are assumed to be entirely
implemented in end hosts. We examined the current version of the
implementation and the set of forwarding rules made available by
the authors, adding assertions to their code. As part of the imple-
mentation, an Acceptor votes by adding voting information to the
incoming packets before forwarding them. Specifically, the execu-
tion violated the assertion if(traverse_path(), forward()), located
inside the action that performs the vote. This indicates that there
are valid packets (containing voting information) being dropped. By
manually inspecting the code, we found that the problem occurs be-
cause the packets are first marked to be dropped by another action,
and not unmarked by the voting actions. This bug can be corrected
by marking the packets to be forwarded inside the actions which
perform the vote. According to the feedback from authors on this
bug, the code was ported to P416, leaving the old code base unmain-
tained and exposed to bugs. Our prototype found this assertion
violation in less than a second.

DC.p4 [31]: DC.p4 implements the behavior of a data center
switch. It contains multiple functionalities such as L2/L3 forward-
ing, ECMP, VLAN, packet mirroring, tunneling and multiple ACLs
(i.e., L2, L3 or based on more specific headers). This program con-
tains more than 2500 lines of code distributed among 37 tables.
Tables, in turn, are organized assuming two sequential packet pro-
cessing pipelines, one for incoming/ingress packets and another
for outgoing/egress packets, interleaved by a queue system.

We verify if configuring the L3 ACL table to drop traffic with a
specific destination IP address properly filters this type of packet.
We used the assertion if(ipv4.dstAddr== FILTER_ADDR, !forward())
to express that packets with IPv4 destination addresses equal to
FILTER_ADDR should be dropped. We found that just configuring
the L3 ACL is not enough for dropping IPv4 packets, regardless
of the policy being enforced. In fact, we checked that the L3 ACL
only flags packets to be filtered by another module in the system,
which must also be appropriately configured. Although this is not
an actual bug, it is still a misconfiguration in the program.

Switch [21]: Since the introduction of the DC.p4 paper, its code
base has evolved to the Switch.p4 program, which is actively main-
tained. We have used our verification approach to reproduce two

79

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos

known bugs, reported on its repository. The first one is the modi-
fication of a field of an invalid header.4 This bug is replicated by
testing with an assertion if the header is valid before setting its
fields. The second bug is related to tunnel encapsulation5, where
encapsulated headers are overwritten whenever multiple nested
levels are present. We included an assertion to test if the inner head-
ers are not valid before performing the encapsulation. The assertion
failed, confirming that encapsulated headers can be overwritten
and their original contents, discarded.

5.2 Language expressiveness
To evaluate our assertion language, we assessed its expressiveness
in terms of the properties we can specify for different P4 programs:
VSS, MRI, TS switching, sTag, Dapper, NetPaxos and DC.p4. Table 1
shows a subset of the properties we tested for each P4 application.

The table demonstrates the use of a wide set of properties, both
program-dependent (e.g., the ones testing if registers are correctly
manipulated in Dapper) and generic ones (e.g., testing whether
headers have been removed from packets or not). Furthermore,
both security and correctness properties can be specified, such as
header integrity and well-formedness, respectively.

5.3 Performance analysis
We assessed how our verification approach scales according to dif-
ferent characteristics of P4 programs. We performed experiments
with and without the speed up strategies described in ♯4. This sub-
section shows the performance values obtained originally, without
the optimizations.

We used the Whippersnapper [7] benchmark to generate data
plane programs, and measured the impact of multiple parameters
in verification times: (i) tables in the packet processing pipeline;
(ii) actions associated with each table; (iii) forwarding rules used to
configure a program; and (iv) number of assertions used to express
properties.

Figure 9 shows the results, considering average verification time
in seconds for various number of tables, assertions, rules per table
and actions per table. Note that the first two plots have y presented
in log scale. We adopted the following default values for parameters:
no forwarding rules and assertions, 1 table in Fig. 9(b), 2 tables in
Figs. 9(c) and 9(d), and 3 actions in the first table and 2 actions in
every subsequent table.

The results show that verification time grows exponentially with
all the factors, with the exception of the number of assertions, which
grows linearly after an initial exponential growth. We can observe
that verification time increases rapidly with the number of tables
(Fig. 9(a)), actions per table (Fig. 9(d)), and rules per table (Fig. 9(c)).
The number of assertions presented both the quickest and slowest
growth in execution time, with a change in trend after 14 assertions
(Fig. 9(b)).

Our approach was able to verify within a few seconds most of
the programs in ♯5.1 and ♯5.2. However, the plots show clearly
that our non-optimized version does not scale well, and that the
verification of larger programs, with more tables and assertions, is

4https://github.com/p4lang/switch/pull/102
5https://github.com/p4lang/switch/issues/97

Table 1: Examples of assertion language being used to spec-
ify different properties in several P4 applications

Program Properties / Assertions
VSS [18] Packets with zero TTL values are dropped

if(ipv4.ttl == 0, !forward())
Marked to drop packets are not forwarded

if(traverse_path(), !forward())

MRI [19] Switch IDs added to packets are authentic
constant(id)

Added IDs are not removed
if(extract_header(id), emit_header(id))

Timestamp
switching
[10]

Out of range timestamps are not forwarded to
receivers

if(forward(), rtp.ts < max_timestamp)

sTag [25] Hosts connected to ports of different colors cannot
communicate

if(ingress_port == color_a &&
ipv4.dstAddr == color_b_host, !forward())

Dapper [11] Only SYN packets register new flows
If(traverse_path()*, tcp.ack == false)

*path that register new flows
Load flow registers when is Ack packet

if(tcp.ack= 1, traverse_path()*)
*path that load registers

NetPaxos [6] Acceptor correctly votes according to paxos phase
if(traverse_path()*, paxos.msgtype == 1A)

*at the handle_1a action
Leader increases round number at each instance

if(traverse_path()*, paxos.msgtype == 2A)
*at the increase_instance action

DC.p4 [31] L3 ACL is effective
if(ipv4.dstAddr == blocked_addr, !forward())

Cloned and original packet have different output
ports

! (cloned_outport == original_port &&
constant(cloned_outport))

likely unaffordable. This prompted us to investigate the adoption
of optimization strategies to the context of P4 program verification.

5.4 Benchmarking optimization strategies
The benchmarks shown in ♯ 5.3 can be re-executed in combination
with some of the optimization techniques proposed in Section 4. The
parallelization and compiler optimizations are general techniques
that are suited to be analyzed with synthetic programs generated by
the Whippersnapper benchmark, whereas the results of applying
the other optimization techniques are tightly coupled to a particular
program and the properties of interest. Therefore, we compare
the original benchmark results with their execution alongside the
parallelization and compiler optimization techniques in Figure 10,
where O3 and Opt represent the LLVM and KLEE optimization flags
respectively.

80

Verification of P4 Programs in Feasible Time using Assertions CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

 1

 10

 100

 1000

 10000

 12 16 20V
e

ri
fic

a
ti
o

n
 t

im
e

 (
s
)

Number of tables

(a)

 100

 1000

 10000

 12 16 20 24

Number of assertions

(b)

 0

 400

 800

 1200

 1600

 0 80 160 240 320

Number of rules per table

(c)

 0

 2

 4

 6

 8

 10

 30 60 90 120 150

Number of actions per table

(d)

Figure 9: Performance analysis of the proposed tool

We can observe that, using the four available cores of the ma-
chine, the parallelization technique was effective in reducing the
verification time when the number of tables of the program varied
(Figure 10(a)), while the parallelization overhead increased the ver-
ification time in the other cases. Since the number of submodels
created by the parallelization strategy grew in proportion to the
number of rules per table (Figure 10(c)) and actions per table (Fig-
ure 10(d)), the number of concurrent executions quickly exceeded
the number of processing elements of the machine, generating a
proportionally larger overhead as the value of the x-axis increases.

Parallelization was also ineffective when we varied the number
of assertions (Figure 10(b)). This can be explained by the use of
a synthetic workload. Recall the submodel generation strategy is
focused on parser and table branches; the submodels generated in
this synthetic case were heavily unbalanced. Verification time was
high whenever the submodel included the action containing the
assertions, but requiring a negligible verification time otherwise.

The O3 LLVM optimization flag resulted in moderate perfor-
mance gains in Figure 10(d) and the first trend of Figure 10(b). No
gains were obtained in Figure 10(a) and the performance deterio-
rated in the second trend of Figure 10(b). When the number of rules
per table varied (Figure 10(c)), a significant reduction in verification
time from an exponential to a linear growth is observed. This can
be explained by compiler optimizations applied to the cascading
if-else statements used to decide which action should be executed
based on the matched values of the forwarding rules.

The “optimize” flag provided by KLEE (named Opt in the graphs)
resulted in small performance gains in Figure 10(b) and no gains in
Figures 10(a) and 10(c). The optimize flag changed the behavior of
the program under verification, as shown in Figure 10(d): it reduced
the program to a constant number of instructions regardless of the
number of actions used.

We can conclude that the efficiency of these optimization tech-
niques depends on the characteristics of the program under verifi-
cation. Hence, in the next section we analyze the impacts of using
all the proposed techniques with various P4 programs found in the
literature with the goal of obtaining insights on their application
on existing programs.

5.5 Analysis of optimization strategies on
existing P4 programs

We now present the results obtained from measuring the impact
of each optimization technique applied to different existing P4
programs. We study their behavior by using the techniques in

isolation, as well as by combining them in a single execution. To
this end, we employ two metrics: (i) the verification time it takes
to explore all the paths of the model, and (ii) the total number of
instructions executed by the symbolic engine.

Table 2 presents the performance gains of each technique in com-
parison to using no optimizations, where the O3 and Opt columns
respectively represent the compiler optimization flag, and the KLEE
optimization flag. Most of the verifications last less than a second
even if no optimizations are applied. The exception is Dapper which
takes roughly a minute to be verified without the speed up tech-
niques. We do not show results for the other programs evaluated in
this paper (e.g., switch.p4) because our analysis is still not able to
scale to an all-paths exploration in those cases (within a two-hour
timeout). Our ongoing work tries to cope with this by investigating
heuristics that simplify dense conditional structures in P4 programs
(e.g., by manipulating forwarding rules) as well as breaking the sym-
bolic execution into separate program blocks (e.g., parser, ingress
and egress pipelines), similarly to what was done in [8].

Packet and control flowconstraints.Although this technique
has the additional cost of requiring the developer to annotate the
code with assumptions, the results presented in Table 2 reveal that
it can greatly reduce the number of instructions symbolically ex-
ecuted. This reduction of instructions also leads to an equivalent
reduction of the verification time of complex programs in which
the symbolic execution is the verification bottleneck, as can be
observed in the Dapper example. Furthermore, even though the
Switch.p4 program was not included in the analysis presented in
Table 2 due to its complexity, by using packet constraints in its bug
finding examples (see Section 5.1), we were able to reduce the time
taken to reveal the bugs from the order of days to the order of sec-
onds. This was achieved by annotating the code with assumptions
that led to the tested assertions.

Program slicing. Program slicing is capable of reducing the
number of instructions considerably, from about 10 percent to more
than 99 percent. However, the cost of performing the slicing with
the Frama-C framework far outweighs the reduction of program size
on smaller programs, which can be verified without the additional
overhead in milliseconds. Furthermore, the Frama-C approach to
slicing has no support for programs with recursion. This resulted in
a failed attempt to slice the MRI program, which contains a recur-
sion in its parser section of the code. Therefore, we conclude that
while program slicing can be an effective technique in some cases,
the development of efficient slicing approaches capable of dealing
with parser recursions is necessary to enable the full adoption of
this technique.

81

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos

 1

 10

 100

 1000

 10000

 12 16 20

Opt, O3, Original

Parallel

V
e

ri
fic

a
ti
o

n
 t

im
e

 (
s
)

Number of tables

(a)

 100

 1000

 10000

 100000

 12 16 20 24

O3

Parallel, Original, Opt

Number of assertions

(b)

 0

 400

 800

 1200

 1600

 0 80 160 240 320

Parallel, Opt, Original

O3

Number of rules per table

(c)

 0

 2

 4

 6

 8

 10

 30 60 90 120 150

Parallel

O3

Opt

Original

Number of actions per table

(d)

Figure 10: Effect of speed up techniques applied to synthetic benchmarks

Table 2: Performance gains of each technique

Reduction in Verification Time Reduction in Number of Instructions
Program O3 Opt Constraints Parallel Slice O3 Opt Constraints Parallel Slice

Dapper 47.80% 15.29% 42.68% 33.03% 27.35% 54.86% 49.90% 50.04% 69.41% 30.70%
sTag -13.54 3.13% -4.17% -39.58% -421.88 56.79% 53.37% 58.14% 66.56% 10.59%
NetPaxos -32.37 5.04% 28.78% -47.48% -273.38 39.43% 42.06% 81.90% -0.36% 74.37%
TS Switching 8.51% 0.00% 2.13% -40.43% -423.40% 73.53% 54.55% 63.38% 38.71% 71.25%
VSS -2.24% 1.60% 2.88% 30.13% -71.79% 20.61% 33.35% 28.60% 38.07% 99.69%
MRI -10.12% 0.39% 6.23% -4.67 - 73.56% 74.36% 37.86% 15.84% -

Compiler optimizations. Even though optimization passes
were able to reduce the number of instructions from approximately
20 percent to up to almost 75 percent, our results indicate that they
can have both positive and negative effects on the time taken to
symbolically execute P4 program models. This can be explained by
the short verification time of most of the tested programs, which
makes the overhead of applying these passes larger than the gains
obtained from reducing the number of instructions. The potential to
reduce the total number of instructions even further in this domain
can motivate the research of optimization passes specific for the
symbolic execution of P4 programs.

Parallelization. The results show that the proposed paralleliza-
tion approach can reduce verification time of some programs. The
total verification time was reduced in approximately 33% with Dap-
per and 30% with VSS using only 4 cores. For very small programs
that can be verified in milliseconds, the added overhead due to
parallelization generally does not justify the use of this technique,
increasing the total verification time in most cases, as can be ob-
served with sTag, NetPaxos, Timestamp Switching, and MRI.

When generating submodels using the approach described in
♯ 4.4, each submodel ends up with a fraction of the total number
of instructions of the original model. To achieve satisfying perfor-
mance gains, the parallelization technique should try to minimize
the difference between the number of instructions of the submodels.
The tenth column of Table 2 presents the reduction on the number
of instructions achieved by the submodel with the greatest number
of instructions (i.e., worst case) when compared to the the original
model. In this case, we can observe that this approach can reduce
the number of instructions in most cases.

Combining the techniques. Since the use of the optimization
techniques are not mutually exclusive, we analyze the potential of
combining them to achieve optimal verification time. We observed

that there is no optimization technique that can guarantee a reduc-
tion in verification time in every case. The combination of tech-
niques that are effective in isolation may not yield optimal results
when combined. This is especially observed with program slicing.
The cost of executing Frama-C takes an increasingly larger part of
the total verification time as the other techniques are combined,
making its overhead exceed the gains obtained from a reduction
in program complexity. The Dapper example, which has higher
verification time than the other programs analyzed, benefited the
most from the combination of techniques. By using constraints,
parallelization, and compiler optimization flags, its verification time
was decreased by 81.76% and its number of instructions by 89.25%.

6 DISCUSSION
Interaction with the control plane. P4 programs can describe
the capabilities of a packet processing pipeline, but not the specific
rules that dictate forwarding behavior. In general, these rules are
defined by the control plane during network operation, and a P4
program just reflects the maximal set of possible behaviors the
control plane can express. As a result, P4 verification tools need
to deal with this possibly missing information (i.e., the lack of a
control plane configuration) somehow. Our tool is quite flexible
in that sense, and allows programmers to take the control plane
into account in three different ways: i) input an specific set of rules,
reflecting a given control plane configuration; ii) leave the rules
unspecified, which will cause all possible behaviors to be checked;
and iii) use assume statements to capture restrictions on the control
plane behavior.

Specifying a set of forwarding rules has the advantage of accel-
erating symbolic execution [33]. However, it requires verifying the
program again every time the rule set changes. Leaving all rules
unspecified, on the other hand, results in a complete analysis of
the P4 program, but allows the occurrence of false positives when
violations are reported to cases that may never happen in practice

82

Verification of P4 Programs in Feasible Time using Assertions CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

(e.g., because of restrictions at the controller code). Finally, using
constraints to model the behavior of the control plane yields a more
precise solution, but potentially requires a non-negligible program-
ming effort for capturing and correctly specifying the control plane
semantics. Possible alternatives to the burdens identified in the
solutions above include automatically capturing the semantics of
the control plane, checking for false positives or using customized
data structures to store verification state (e.g., in line with tools like
VeriFlow [16] or DeltaNet [12]). We leave these investigations as
future work.

Validation of Cmodels. To increase confidence in the accuracy
of our P4 to C translator, we validate its generated models using
input-output tests. More specifically, we select a set of packets P
and use it as input to both the BMv26 switch (configured with the
P4 program under test) and the associated model. We then compare
both outputs to check if there is any discrepancy. Our ongoing work
aims to automate this process, where we use a packet generator
(e.g., p4pktgen [28]) to systematically generate test cases.

Stateful verification. P4 programs may contain persistent state
(i.e., state that depends on a sequence of packets) in the form of
registers, meters, counters and other types of extern objects. While
reasoning about stateful networks or network functions is unde-
cidable in the general case [35], the fact that P4 programs have
bounded state (i.e., the amount and nature of the information that
can be stored is known a priori) makes the problem tractable. To
verify programs that contain registers, for example, we first model
them using equivalent data structures in C, and then leave the verifi-
cation proceed in one of two different ways: i) assume that registers
can take any value, which is equivalent to making them symbolic;
or ii) restrict their domain to a particular set. This approach is
similar to [8].

Unsupported features.Although our prototype supportsmany
of the P4 constructs, others still remain to be implemented. Ex-
amples of features our tool cannot handle at the time of writing
include variable length fields, ternary matching keys (when for-
warding rules are used), parsing exceptions, and parser value sets.
Checksums are a special case because they cannot be calculated
when headers are symbolic, situation in which we assume they are
correct by default. We intend to pursue full compliance with the P4
specification in the future.

7 RELATEDWORK
Network verification. Many tools were proposed for verifying
correctness and security properties in computer networks over
the last few years. They are based on a myriad of techniques and
address different properties and/or network architectures. While
the types of properties vary across the literature, they are mainly
related to host reachability, including isolation, absence of black
holes, and loop-freedom. Some focus on the control plane, while
others, on the data plane.

Efforts that focus on the data plane are more similar to our
approach. They operate by verifying if a particular snapshot of the
data plane satisfies the network-wide properties. This strategy can
be traced back to Anteater [26], which models the data plane as
boolean functions that are analyzed with a SAT solver to check for

6https://github.com/p4lang/behavioral-model

reachability, network loops, black holes, and consistency. Similarly,
Header Space Analysis (HSA) [15] proposes header space algebra
as a technique for checking reachability, isolation of network slices
and packet leakage. Based on HSA, NetPlumber [14] incrementally
updates the network model as changes occur in the data plane. This
allows efficient verification in real time. Other tools that perform
real time verification of the data plane are VeriFlow [16], DeltaNet
[12], and Flover [32]. VMN [29] focuses on verifying reachability
and isolation in networks containing stateful middleboxes. NOD
[25] uses Datalog to model both the network and its reachability
properties. A solution that translates P4 programs to Datalog and
verifies reachability and well-formedness was proposed in [27].
Further, p4v [24] converts P4 programs into Guarded Command
Language (GCL) models and uses a theorem prover (i.e., Z3) to show
that various safety, architectural and program-specific properties
hold. p4v optimizes the constraints passed to Z3 using techniques
such as constant propagation and dead code elimination in order
to scale the verification to larger programs.

The symbolic execution technique has been previously used to
verify data planes. [8] proves that pipelines composed of Click ele-
ments satisfy crash-freedom, bounded execution, and packet filtering
properties. The authors try to handle the path explosion problem
by symbolically executing the Click elements separately. p4pktgen
[28] uses symbolic execution to generate test cases for P4 programs.
It applies backtracking techniques to prune unfeasible paths during
the execution and thus reduce the search space. Symnet [34], in turn,
is a verifier of data plane models built using the SEFL language, also
proposed by the authors. This language contains instructions that
simplify its symbolic execution, allowing the efficient verification
of complex programs.

Vera [33] extends Symnet to support the verification of P4 pro-
grams. It automatically inserts checks that capture general safety
bugs (e.g., invalid memory accesses) and also provides a property
specification language based on Computation Tree Logic (CTL)
for checking program-specific invariants. We believe our assertion
language provides a more accessible way for P4 programmers to
express intricate properties compared to temporal logic or even
first-order logic. For example, domain specific methods such as
extract_header and emit_header benefit from being largely drawn
from the same language as the program under test (i.e., P4). Devel-
oping automatic ways to instrument P4 programs with assertions
as well as providing a detailed performance comparison between
our tool and Vera are interesting research directions for our work.

Assertion language. Beckett et al. [1] present an assertion lan-
guage to verify SDN applications. It enables expressing properties
that the data plane should satisfy at different points of a control
program. The assertions are verified using the VeriFlow [16] tool,
which, like Flover, acts over forwarding rules instantiated in Open-
Flow devices. While the language Becket et al. propose is used in
SDN applications, our approach is to directly annotate a data plane
program to prove properties of interest.

8 CONCLUSION
We presented in this work an assertion language that can be used
by P4 programmers to express correctness and security properties
of a specific implementation. Our solution is more expressive than

83

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece Miguel Neves, Lucas Freire, Alberto Schaeffer-Filho, Marinho Barcellos

other data plane verification approaches, being the first work to
allow proving properties specific to P4 source code and optionally
the forwarding rules used by its tables. Our mechanism verifies the
assertions using symbolic execution over C models automatically
generated from the program and assertions.

We evaluated our approach by finding a broad range of bugs in
real P4 programs found in the literature. The performance analysis
of the proposed mechanism revealed that despite its efficiency in
verifying small programs, the execution time grows exponentially
with relation to the number of tables, actions, forwarding rules,
and assertions. Thus, alongside our tool, we presented a range of
techniques that can be used to speed up the verification time of
complex programs. We also demonstrated in our experiments that
combining the proposed optimization techniques we can reduce
the verification time of non-trivial P4 programs in 81 percent.

As future work, we intend to explore the application of our ap-
proach in verifying network-wide properties of networks composed
of P4 programs. The assertion language can also be investigated
with the goal of providing the automatic insertion of assertions.
These assertions could be used to verify general properties such as
reading fields of invalid headers or checking the bounds of arrays.
The P4 to C translation can be improved by proving the correctness
of the process, as well as increasing the number of external objects
modeled. Finally, the compiler flags and program slicing optimiza-
tion techniques can be fine-tuned to our proposal by investigating
optimization passes and slicing approaches optimal to our use cases.

ACKNOWLEDGMENTS
We are grateful to our shepherd, Cole Schlesinger, and the anony-
mous reviewers for their constructive feedback. This work has
been supported by grants from RNP/CTIC (P4Sec), FAPERGS (APE),
CNPq (201481/2017-0, 310408/2017-2 and 311088/2015-5), and also
by CAPES/Brazil – Finance Code 001.

REFERENCES
[1] Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jennifer Rexford,

and DavidWalker. 2014. AnAssertion Language for Debugging SDNApplications.
In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). ACM, New York, NY, USA, 91–96. https://doi.org/10.1145/2620728.
2620743

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[3] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel
Symbolic Execution for Automated Real-world Software Testing. In Proceedings
of the Sixth Conference on Computer Systems (EuroSys ’11). ACM, New York, NY,
USA, 183–198. https://doi.org/10.1145/1966445.1966463

[4] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 209–224.
http://dl.acm.org/citation.cfm?id=1855741.1855756

[5] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
Made Switch-y. SIGCOMM Comput. Commun. Rev. 46, 2 (May 2016), 18–24.
https://doi.org/10.1145/2935634.2935638

[6] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research (SOSR ’15). ACM,
New York, NY, USA, Article 5, 7 pages. https://doi.org/10.1145/2774993.2774999

[7] Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon Brebner, Changhoon Kim,
Jennifer Rexford, Robert Soulé, and HakimWeatherspoon. 2017. Whippersnapper:
A P4 Language Benchmark Suite. In Proceedings of the Symposium on SDNResearch

(SOSR ’17). ACM, New York, NY, USA, 95–101. https://doi.org/10.1145/3050220.
3050231

[8] Mihai Dobrescu and Katerina Argyraki. 2014. Software Dataplane Verification.
In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). USENIX Association, Seattle, WA, 101–114. https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/dobrescu

[9] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar.
2016. BUZZ: Testing Context-Dependent Policies in Stateful Networks. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). USENIX Association, Santa Clara, CA, 275–289. https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/fayaz

[10] Tomas G. Edwards and Nick Ciarleglio. 2017. Timestamp-Aware RTP Video
Switching Using Programmable Data Plan. Industrial Demo. In ACM SIGCOMM.

[11] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dapper: Data
Plane Performance Diagnosis of TCP. In Proceedings of the Symposium on SDN
Research (SOSR ’17). ACM, New York, NY, USA, 61–74. https://doi.org/10.1145/
3050220.3050228

[12] Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-net: Real-time
Network Verification Using Atoms. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 735–749. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/horn-alex

[13] Theo Jepsen, Leandro Pacheco de Sousa, Huynh Tu Dang, Fernando Pedone, and
Robert Soulé. 2017. Gotthard: Network Support for Transaction Processing. In
Proceedings of the Symposium on SDN Research (SOSR ’17). ACM, New York, NY,
USA, 185–186. https://doi.org/10.1145/3050220.3060603

[14] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In Presented as part of the 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13). USENIX, Lombard, IL, 99–
111. https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/
kazemian

[15] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI’12). USENIX Associ-
ation, Berkeley, CA, USA, 9–9. http://dl.acm.org/citation.cfm?id=2228298.2228311

[16] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
2012. VeriFlow: Verifying Network-wide Invariants in Real Time. In Proceedings
of the First Workshop on Hot Topics in Software Defined Networks (HotSDN ’12).
ACM, New York, NY, USA, 49–54. https://doi.org/10.1145/2342441.2342452

[17] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris
Yakobowski. 2015. Frama-C: A Software Analysis Perspective. Form. Asp. Comput.
27, 3 (May 2015), 573–609. https://doi.org/10.1007/s00165-014-0326-7

[18] The P4.org language consortium. 2016. VSS Example. https://github.com/p4lang/
p4c/blob/master/testdata/p4_16_samples/vss-example.p4. (2016).

[19] The P4.org language consortium. 2017. MRI Exercise. https://github.com/p4lang/
tutorials/blob/master/SIGCOMM_2017/exercises/mri/solution/mri.p4. (2017).

[20] The P4.org language consortium. 2017. P4 reference compiler. https://github.
com/p4lang/p4c. (2017).

[21] The P4.org language consortium. 2018. Switch. https://github.com/p4lang/switch.
(2018).

[22] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-directed and Runtime
Optimization (CGO ’04). IEEE Computer Society, Washington, DC, USA, 75–.
http://dl.acm.org/citation.cfm?id=977395.977673

[23] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. LossRadar: Fast
Detection of Lost Packets in Data Center Networks. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and Technolo-
gies (CoNEXT ’16). ACM, New York, NY, USA, 481–495. https://doi.org/10.1145/
2999572.2999609

[24] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert
Soulé, Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. 2018. P4V:
Practical Verification for Programmable Data Planes. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’18). ACM, New York, NY, USA, 490–503. https://doi.org/10.1145/3230543.3230582

[25] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and
George Varghese. 2015. Checking Beliefs in Dynamic Networks. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 499–512. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/lopes

[26] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten
Godfrey, and Samuel Talmadge King. 2011. Debugging the Data Plane with
Anteater. In Proceedings of the ACM SIGCOMM 2011 Conference (SIGCOMM ’11).
ACM, New York, NY, USA, 290–301. https://doi.org/10.1145/2018436.2018470

[27] George Varghese Nuno Lopes Nikolaj Bjorner Andrey Rybalchenko Nick McKe-
own, Dan Talayco. 2016. Automatically verifying reachability and well-formedness
in P4 Networks. Technical Report.

84

Verification of P4 Programs in Feasible Time using Assertions CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

[28] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and Peter Athanas.
2018. P4Pktgen: Automated Test Case Generation for P4 Programs. In Proceedings
of the Symposium on SDN Research (SOSR ’18). ACM, New York, NY, USA, Article
5, 7 pages. https://doi.org/10.1145/3185467.3185497

[29] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker.
2017. Verifying Reachability in Networks withMutable Datapaths. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 699–718. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/panda-mutable-datapaths

[30] S. Signorello, R. State, J. Francois, and O. Festor. 2016. NDN.p4: Programming
information-centric data-planes. In 2016 IEEE NetSoft Conference and Workshops
(NetSoft). 384–389. https://doi.org/10.1109/NETSOFT.2016.7502472

[31] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait Dixit,
and Mihai Budiu. 2015. DC.P4: Programming the Forwarding Plane of a Data-
center Switch. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research (SOSR ’15). ACM, New York, NY, USA, Article 2,
8 pages. https://doi.org/10.1145/2774993.2775007

[32] Sooel Son, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu.
2013. Model checking invariant security properties in OpenFlow. In 2013 IEEE

International Conference on Communications (ICC). IEEE, 1974–1979.
[33] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and

Costin Raiciu. 2018. Debugging P4 Programs with Vera. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’18). ACM, New York, NY, USA, 518–532. https://doi.org/10.1145/3230543.3230548

[34] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-
Net: Scalable Symbolic Execution for Modern Networks. In Proceedings of the
2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY, USA,
314–327. https://doi.org/10.1145/2934872.2934881

[35] Yaron Velner, Kalev Alpernas, Aurojit Panda, Alexander Rabinovich, Mooly Sagiv,
Scott Shenker, and Sharon Shoham. 2016. Some Complexity Results for Stateful
Network Verification. In Proceedings of the 22Nd International Conference on
Tools and Algorithms for the Construction and Analysis of Systems - Volume 9636.
Springer-Verlag New York, Inc., New York, NY, USA, 811–830. https://doi.org/10.
1007/978-3-662-49674-9_51

[36] Mark Weiser. 1981. Program Slicing. In Proceedings of the 5th International
Conference on Software Engineering (ICSE ’81). IEEE Press, Piscataway, NJ, USA,
439–449. http://dl.acm.org/citation.cfm?id=800078.802557

85

