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ABSTRACT
Deploying traffic engineering (TE) in the context of multi-controller
SDN (MCSDN) or on WANs is challenging due to state and con-
sistency requirements. For example, using strong consistency to
ensure that information is always up-to-date introduces significant
performance overheads. However, using eventual consistency to re-
duce synchronisation time comes at the expense of using outdated
information to make decisions. We design and implement Helix, an
MCSDN system that supports deployment on WANs. Helix offloads
operations closer to the data plane and minimises shared state be-
tween devices, allowing it to tolerate high latency and mitigate
state consistency concerns. We develop a lightweight TE algorithm
that requires minimal state, making it suitable for use with Helix.
Our simulation results show that Helix reduces congestion loss by
up to 1.6x and performs 12x fewer path changes compared to CSPF.

CCS CONCEPTS
• Networks → Traffic engineering algorithms; Network relia-
bility; Network performance evaluation.
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1 INTRODUCTION
Traffic Engineering (TE) is a critical task that provides efficient
forwarding. Current TE optimisation methods are complex and
need up-to-date network-wide information to operate. As such,
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Figure 1: Architecture components of a hierarchical multi-
controller SDN system.

deploying TE in the context of Multi-Controller SDN (MCSDN) is
challenging due to state and consistency requirements.

MCSDN addresses scalability concerns by distributing the con-
trol plane across multiple devices. MCSDN controllers share net-
work state using one of two synchronisation approaches. First,
strong consistency [10, 21] guarantees that information is always up-
to-date, which ensures that controllers always perform forwarding
decisions using the current state. Strong consistency introduces per-
formance overheads [6, 40], which delays TE optimisation and thus
decreases traffic forwarding performance. Second, eventual consis-
tency relaxes the guarantees of the model to improve performance
[40]. Eventual consistency removes these performance overheads
at the expense of using outdated information to make TE decisions,
which can increase path change churn, cause policy violation, and
packet loss. Issues of performance and consistency are further com-
plicated when deploying on a Wide Area Network (WAN) because
these networks contain higher inter-device latency.

In this paper, we discuss the design and implementation of Helix,
a hierarchical MCSDN system that combines various techniques
to address performance, robustness and consistency concerns of
deploying TE on WANs. Helix offloads critical operations (such as
inter-area TE and failure recovery) closer to the data plane, which
allows it to tolerate high inter-device latency and improve its robust-
ness to controller failures by removing dependencies between de-
vices. Helix requires and shares minimal state between controllers,
improving update propagation time and reducing state consistency
concerns. Like other hierarchical MCSDN systems such as Espresso
[54] and TurboEPC [45], Helix defines two controller types, Local
Controller (LC) and Root Controller (RC), illustrated in figure 1.
LCs are deployed within an area and interact with switches, while
RCs connect to all LCs and coordinate inter-area operations.

Our contributions are as follows: First, we design and imple-
ment Helix, a hierarchical MCSDN system that combines various
techniques to address performance, robustness and consistency

https://doi.org/10.1145/3482898.3483354
https://doi.org/10.1145/3482898.3483354
https://doi.org/10.1145/3482898.3483354


SOSR ’21, October 11–12, 2021, Virtual Event, USA Zaicu, et al.

concerns of deploying TE on WANs. Second, we develop a light-
weight TE algorithm that requires minimal-state and is suitable
for use with Helix. Third, we design and implement an emulation
framework that allows comparing failure resilience performance of
MCSDN systems. We use YATES [32], a simulation framework, to
evaluate and compare Helix’s TE algorithm performance against
other algorithms. We find that Helix reduces congestion loss by
up to 1.6x while performing up to 12x and 29x fewer path changes
compared to CSPF and MCF TE algorithms. We make all our source
code for Helix and the emulation framework available at [1].

2 RELATEDWORK
Control Plane Load Balancers: Balcon [52], Elasticon [12], and
others [5, 8, 13, 18, 36, 44, 56] resolve control plane load imbal-
ances by migrating switches between controllers. Despite resolving
both CPU and request imbalances, these systems increase inter-
controller communication, delay forwarding state modification dur-
ing switch migration, or increase control plane latency by moving
switches to distant controllers. Helix addresses CPU and request
load imbalances by reducing the computational intensity of con-
troller operations (e.g. TE) and using offloaded operations.

OffloadingControllerOperations:DIFANE [57], Kandoo [19],
TurboEPC [45], and others [9, 46, 47] explored offloading operations
closer to the data plane to improve scalability and performance.
To the best of our knowledge, previous work has not explored
offloading of inter-area TE in the context of MCSDN.

In-Band Load Balancers: Conga [2], Hula [28], Contra [23],
and Dash [24], deploy specialised P4 [7] programs onto switches to
propagate metrics hop-by-hop and resolve congestion by splitting
traffic on multiple paths. These systems require hierarchical data
plane structures and low latency making them unsuitable forWANs.

TE Systems: The majority of work in the literature has either
not considered TE [17, 31, 41, 43], proposed architectures that make
deploying TE difficult [40, 55], only considered single controller
deployment [22, 33], or proposed methods that apply to specific
networks [14, 15, 22, 26, 54]. Helix improves performance by reduc-
ing the amount of shared state between controllers and offloading
inter-area TE closer to the data-plane. Helix uses a lightweight
TE optimisation mechanism that reduces its problem search space,
resulting in fewer path changes and decreasing controller load.

MCSDN Systems: MCSDN systems such as B4 [26], Kandoo
[19], Espresso [54], and others [14, 17, 30, 43], divide the network
into areas. Operators decide on the switch-to-controller mapping
and controller locations for their network based on available re-
sources or using a Controller Placement Problem (CPP) solver such
as [20, 27, 35, 37, 53]. Logically centralised MCSDN systems such as
Onix [30], ONOS [6], DISCO [41], and Orion [15] allow controllers
to make end-to-end decisions with centralised scope by propagating
complete network state between devices. Single controller image
frameworks such as Beehive [55] and SCL [40] effectively imple-
ment a logically centralised system by taking a Single-Controller
SDN (SCSDN) system and automatically deploying it on multiple
devices. Both system types suffer from performance issues because
they require strong consistency. Helix avoids performance over-
heads by not using strong consistency and reducing the amount
of shared state between devices. Distributed MCSDN systems use
eventual consistency and introduce the notion of local and global
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Figure 2: Helix design overview. Border switches and inter-
area link ports are labelled on the diagram. The diagram
shows (in order) Helix’s supported operations (§3.2 - §3.6).

operations. Compared to Helix, these systems either share more
information between controllers or target specific applications [43].
Furthermore, Helix mitigates eventual consistency issues by reduc-
ing the amount of shared state and offloading operations.

3 HELIX DESIGN
We designed Helix to minimise load and shared state between
devices while still offering robust resilience to failures.

Helix uses a hierarchical control plane architecture, which re-
duces controller load and simplifies the system’s design [39]. Helix
deploys multiple redundant controller instances in a cluster to im-
prove control plane failure resilience and remove single points of
failure. Helix ensures consistency between cluster instances by re-
stricting changes to a single primary device. Controller instances
use a lightweight leader election process to designate the primary
device and detect failures.

Helix uses eventual consistency to synchronise network infor-
mation between controllers and uses abstraction to minimise infor-
mation shared with the RC, which mitigates consistency concerns
and improves scalability.

(3.1) LC Data Plane Recovery: Helix LC’s use protection re-
covery to proactively address data plane failures. Protection recov-
ery uses precomputed paths to allow switches to restore traffic
forwarding without controller intervention. The LCs deploy pro-
tection recovery by computing and installing multiple minimally
overlapping paths for each source-destination pair in their areas.

Despite the benefits, protection recovery raises two issues. First,
switches must support fast-failover groups to deploy protection
[48, 49]. Second, protection paths can lose optimality if the topology
changes. To resolve the latter, the LC checks if paths are still opti-
mal and recomputes them if necessary after detecting a topology
change.

(3.2) RC Topology: Helix reduces the amount of state the RC
maintains by abstracting topology information. Reducing managed
state improves the scalability of the system and mitigates state con-
sistency concerns. The RC topology contains all hosts and border
switches of an area. Helix abstracts other elements of the local
topology to a single node (fig. 2 [i]). The RC’s topology includes
border switches to allow the RC control over the ingress and egress
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port for a particular area. In the RC’s topology, two border switches
interconnect two areas via an inter-area link.

(3.3) RC Path Computation: The RC computes multiple ab-
stracted minimally overlapping paths for every inter-area source-
destination pair (fig. 2 [ii]). The computed paths specify the ingress
and egress points needed in every area to forward traffic. The RC
converts the paths to a sequence of instructions which it sends
to the LC clusters (fig. 2 [iii]). The LCs use the RC instructions to
install local path segments using the LC protection mechanism (fig.
2 [iv]). Helix’s protection recovery mechanism allows restoration
of data plane forwarding without LC or RC involvement.

(3.4) LC TE Optimisation: Helix attempts to minimise conges-
tion. LCs collect and monitor link usage and path transmission
rates for their respective areas. LCs consider a link as congested
when its usage rate exceeds a threshold. LCs resolve congestion by
modifying paths to avoid using the congested link.

Helix offloads inter-area TE optimisation to LCs, which improves
performance and mitigates the state synchronisation concerns
raised by using eventual consistency. LCs detect inter-area conges-
tion by monitoring transmission rates on inter-area ports. When
an inter-area link becomes congested, the LCs will shift inter-area
traffic to another inter-area link (egress point) (fig. 2 [v]). In essence,
LCs perform inter-area TE optimisation by making local decisions
that influence the upstream path of traffic through other areas.

(3.5) RC TE Optimisation: Despite offloading inter-area TE to
LCs, an LC cannot influence where traffic enters its area. When
an area experiences congestion on all egress links, the LC will fail
to resolve inter-area congestion locally because it lacks sufficient
headroom on alternative inter-area links to move traffic. Helix
addresses this scenario by implementing an RC TE optimisation
procedure, initiated by an LC when it fails to resolve inter-area
congestion. The RC and LC TE mechanisms are similar.

LCs collect and periodically provide the RC with inter-area link
usage information. The LC optimisation request includes a set of
source-destination pairs using the congested port and the amount
of traffic each path carries observed by the ingress ports of the area.
The RC’s TE mechanism modifies inter-area paths to divert traffic
away from a congested area.

(3.6) Updating Inter-Area Paths: Because Helix offloads inter-
area TE optimisation to local controllers, LCs can change the path
used by inter-area traffic. To ensure that the RC path information
is up-to-date and reflects the actual installed data plane forwarding,
Helix implements a path change notification mechanisms. When
an LC modifies the egress port of an inter-area path, it will send
a notification to the RC which will update its computed path in-
formation (fig. 2 [vi]). LCs detect ingress changes for inter-area
traffic within their area by monitoring ingress ports (fig. 2 [vii]).
When an ingress change is detected, the LC will notify the RC to
update its information (fig. 2 [viii]). Helix performs local ingress
change detection to remove dependencies between LC clusters and
improve the control plane failure resilience of the system.

4 HELIX IMPLEMENTATION
We implemented Helix using Ryu [4], a Python OpenFlow frame-
work. Both the Local Controller (LC) and the Root Controller (LC)
are divided into several modules: inter-controller communication

(§4.1), topology discovery (§4.2), path computation (§4.3, §4.4), and
TE optimisation (§4.4, §4.5).

(4.1) Inter-Controller Communication Module: Helix con-
trollers communicate via messages using the Advanced Message
Queuing Protocol (AMQP) [38] with a publish-subscribe (pub-sub)
model. The Helix pub-sub model groups messages into channels
based on routing keys. Each routing key conveys specific infor-
mation about a relevant topic (e.g. local controller topology infor-
mation). Helix controllers create bindings subscribing to receive
messages on a set of channels, depending on the required state.

(4.2) LC Topology Discovery Module: We extended Ryu’s
topology detection module to support controller roles, host discov-
ery, and inter-area link detection. The topology discovery module
performs active bidirectional link connectivity and failure detec-
tion through Link Layer Discovery Protocol (LLDP) packet flooding.
LCs send LLDP packets on every port of every switch they manage.
Switches send received LLDP packets to the LC, allowing the con-
troller to observe the topology. LLDP packets also act as heartbeat
messages, which enable the LC to infer data plane failures.

LCs discover inter-area links using the LLDP mechanism. Be-
cause of the packet flooding process, neighbouring area LCs will
receive flooded LLDP packets from other LC clusters on inter-area
links. When an LC receives an LLDP packet from a switch it does
not manage, it processes it as an inter-area link discovery packet.

(4.3) LC Path Computation Module: The LC path computa-
tion module uses Dijkstra’s algorithm [11] to compute two mini-
mally overlapping paths (𝑃𝑝𝑟𝑖𝑚 and 𝑃𝑠𝑒𝑐 ) and a set of path splices
for every source-destination pair in the area. The path computation
module generates minimally overlapping paths through link manip-
ulation. Links previously used in 𝑃𝑝𝑟𝑖𝑚 will be set to large weights
causing the algorithm to avoid using them, generating minimally
overlapping paths. After 𝑃𝑝𝑟𝑖𝑚 and 𝑃𝑠𝑒𝑐 are computed, the module
generates a set of path splices to increase protection coverage.

A path splice is the shortest path between unique nodes in the
first path to unique nodes in the second path such that the exit node
is closest to the final destination (minimise path stretch). A path
splice increases protection coverage and allows switches to recover
from complex failure conditions, such as simultaneous failures on
both primary and secondary paths.

The module translates the computed paths into a set of ports it
installs onto the data plane using the fast-failover group type.

(4.4) LC TE Optimisation Module: The TE module detects
bidirectional link congestion by polling switches for port statis-
tics. The TE module monitors source-destination pair (candidate)
transmission rates on ingress points of the area by recording send
statistics of ingress rules. LCs attempt to reduce port usage by
modifying candidate paths to avoid the congested ports.

First, the module recomputes the congested port usage rate based
on the candidate traffic send rates to account for congestion loss.
The TE optimisation module considers candidates in descending
order of generated traffic. Second, the algorithm uses a CSPF-style
recomputation to move the candidate’s traffic away from the con-
gested port while not introducing new congestion to the network.
The algorithm prunes the topology of links that do not have suffi-
cient capacity to carry the candidate traffic and recomputes the path
using Dijkstra’s algorithm. The module will keep track of all valid
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candidate path change and apply them if it successfully resolved
the detected congestion

(4.5) RC TE Optimisation Module: The RC TE optimisation
module recomputes inter-area source-destination paths (candidates)
to avoid a congested inter-area link. The RC uses the same CSPF-
style recomputation used by the LCs to recompute candidate paths
and resolve congestion. If the RC finds a solution to resolve the de-
tected congestion, the RC converts the new paths into instructions,
which it sends to the LCs to be installed onto the data plane.

5 EMULATION FRAMEWORK
We developed an emulation framework to evaluate control plane
failure resilience. The framework provides two contributions. First,
the framework computes metrics that allow comparing an MCSDN
system’s failure recovery performance. Second, the framework
checks the behaviour of an MCSDN system by monitoring its in-
teraction with the data plane. In essence, the framework provides
a black-box testing tool that ensures an MCSDN system exhibits
correct behaviour under predefined failure conditions.

The emulation framework is built on top of Mininet [34] and
requires four inputs. First, a topology 𝑇 specifies the network to
use for the experiment. Second, 𝐹 defines a failure scenario that
outlines the actions to emulate. Third, 𝐴𝑚𝑎𝑝 outlines the areas in
𝑇 and the switch-to-controller assignment. 𝐴𝑚𝑎𝑝 describes the set
of nodes (𝑛) every controller cluster (𝑐) manages (∀𝑛 ∈ 𝑇,∀𝑐 ∈
𝑇 ;𝐴𝑚𝑎𝑝 : 𝑛 ↦→ 𝑐) and the set of redundant instances (𝑖) in each
cluster (∀𝑖 ∈ 𝑐;𝐴𝑚𝑎𝑝 : 𝑖 ↦→ 𝑐). Finally, 𝐸𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 contains a set of
event types the framework should observe during an experiment.

We divide failure scenarios into multiple stages (𝐹𝑠𝑡𝑎𝑔𝑒 ) to allow
the framework to attribute observed events to a sequence of actions.
An 𝐹𝑠𝑡𝑎𝑔𝑒 contains a set of actions such that 𝐹𝑎𝑐𝑡𝑖𝑜𝑛 ∈ 𝐹𝑠𝑡𝑎𝑔𝑒 . The
framework implements three action types: (1) fail a control plane
device, (2) start a control plane device, and (3) introduce a delay.

During an experiment, the framework monitors the MCSDN
system’s behaviour, generating a set/timeline of events (𝐸𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ).
The framework collects two event types. (1) Control-channel events,
which describe the interaction between the controller and switches,
are collected by capturing and processing control plane traffic. (2)
Local events, which represent internal controller state changes, are
gathered by monitoring the log files of the MCSDN system. Local
event collection requires support from the MCSDN system because
controllers need to push information to their respective logs when
a relevant state change occurs.

The framework uses local events to separate metrics into com-
ponents. For example, the framework uses local events to calculate
the failure detection (𝛿𝐹𝐷 ) and role change (𝛿𝑅𝐶 ) component of
the failure recovery metric (Δ𝑟𝑒𝑐𝑣 = 𝛿𝐹𝐷 + 𝛿𝑅𝐶 ). We designed the
framework to produce metrics that allow comparing performance
without the MCSDN system providing local event support. As a
result, local events are optional.

6 EVALUATION: RESILIENCE
It is intractable to evaluate Helix under all possible failure scenarios.
As a result, we define several hard-to-solve failure conditions (si-
multaneous failures) across a failure scenario to characterise Helix’s
failure resilience performance. We repeat experiments 100 times
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Figure 3: The topology used to evaluateHelix’s control plane
failure resilience. Dashed lines represent control-channel
links and solid lines inter-area connections.

and report the average metric values along with the 95% confidence
interval. We used a control-channel latency of 20ms to simulate
conditions found in WANs.

We calculated the edge-to-edge latency of a WAN by using a
medium-sized network from the Internet Topology Zoo Project
[29], specifically the AT&TMPLS network, based on the geographic
distance scaled to account for latency inflation as described in [50].
We assumed that controllers are deployed in the centre of an area
to minimise inter-device communication time, so we used a latency
of 20ms (half the edge-to-edge latency) to represent deployment
conditions encountered on an average WAN.

For our experiments, we use a topology (𝑇 ) illustrated in figure
3 consisting of five areas labelled 𝐴1 - 𝐴5. In 𝑇 , a controller cluster
𝐶𝑛 manages the area 𝐴𝑛 where 𝑛 represents a unique ID (1 - 5). 𝐴1,
𝐴2 and 𝐴3 contain two controller instances per cluster. 𝐴4 and 𝐴5
contain one instance per cluster. We limit the number of switches
and hosts in each area to minimise the likelihood of encountering
emulation overheads. All areas in 𝑇 contain three switches. 𝐴1
contains two hosts labelled 𝐻1 and 𝐻2 while 𝐴3 contains the final
host 𝐻8.

We also evaluated Helix’s control-plane failure resilience perfor-
mance against cascading failures. Cascading failures often occur
due to increased load caused by shifting resources from a failed
instance to another. Due to space constraints, we omitted these re-
sults from the paper. Our cascading failure results and observations
were consistent with the results presented in this section.

Table 1 presents the average metric values when evaluating Helix
using the defined failure scenario (simultaneous failures). The stages
of the scenario are as follows: (a) emulates a simultaneous failure of
the primary controller instance across the 𝐶1, 𝐶2 and 𝐶3 clusters;
(b) emulates either adding a new controller instance to an existing
cluster or restarting a failed instance; (c) emulates a single controller
instance failure; (d) emulates the failure of an area (i.e. a controller
instance failure that Helix will propagate to the RC).

Local Cluster Recovery: For stages (a) and (c), Helix did not
modify any paths and did not propagate the failure events to 𝑅0.
The average failure recovery metric for (a) and (c) was 1.6 and 1.1
seconds. The average observed failure detection time (a component
of failure recovery) is 1 second for both stages, while role change
time took an average of 36ms and 37ms. For Helix, failure detection
made up over 90% of the recovery metric. The significant contribu-
tion of failure detection to recovery time is unsurprising because
Helix uses a timeout mechanism to detect instance failures. The
timeout mechanism introduced a long enough delay to account for
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Metric Time (s) Metric Time (s)
Average ; CI Average ; CI

(a) Failure Recovery 1.609 ; 0.181 (c) Failure Recovery 1.106 ; 0.116
Failure Detection 1.003 ; 0.033 Failure Detection 0.958 ; 0.058
Role Change 0.036 ; 0.002 Role Change 0.037 ; 0.003

(b) Cluster Join Time 0.959 ; 0.056 (d) Area Failure Recovery 3.426 ; 0.084
Controller Start 0.426 ; 0.005 Failure Detection 2.365 ; 0.084
Initiation Phase 0.005 ; 0.000 𝑅0 Compute Path 1.002 ; 0.000
Switch Enter 0.522 ; 0.056 𝑅0 Path Installation 0.059 ; 0.002
Role Change 0.011 ; 0.000

Table 1: Control plane failure resilience results (average over
100 iterations) for Helix. Failure detectionmade up over 90%
of Helix’s failure recovery metric.

latency and timer trigger differences between instances. However,
role change requests are not delayed and only affected by latency,
contributing less to the metric value.

In our experiments, failure detection was affected by the keep-
alive (𝜏𝑘 ) and timeout (𝜏𝑡𝑖𝑚𝑒𝑜𝑢𝑡 ) configuration values and the align-
ment of the failure events to keep-alive intervals. We expect that
Helix detects a failure within 𝜏𝑘 + 𝜏𝑡𝑖𝑚𝑒𝑜𝑢𝑡 from the failure action.

Both instance failure recovery metrics and component values
were consistent, despite (a) defining amore complex failure scenario.
Based on the observed consistency, we draw two conclusions: (1)
the framework did not introduce significant overheads to inflate
results, and (2) Helix’s leader election module did not significantly
increase CPU load.

Area Failure Recovery: Once Helix detects a complete cluster
failure, 𝑅0 recomputes inter-area paths to avoid using the failed
area. Because of the used configuration attributes, area recovery
is slower compared to local instance failure recovery. However,
switches will still forward traffic and deal with data plane failures
during a complete cluster failure. Helix will delay area failure re-
covery to promote better forwarding stability (prevent disruptions
and packet reordering) and prevent inter-area path flapping. If de-
sired, modifying Helix’s configuration attributes will change this
behaviour and make area failure detection more aggressive.

The average failure recovery time was 3.4 seconds for (d). 𝑅0 de-
tected the failure of𝐴2 via dead inter-area port messages (triggered
by LC LLDP timeouts) received from 𝐶1 and 𝐶3. The messages
indicated to 𝑅0 that 𝐴2 has become isolated (all inter-area links
failed). On average, Helix detected the area failure in 2.4 seconds.
We observed that 𝑅0 recomputed inter-area paths after a 1-second
delay. The delay represents Helix’s path consolidation timeout
(𝜏𝑅𝐶𝑜𝑛𝑠𝑜𝑙𝑖𝑑𝑎𝑡𝑒 ), which groups multiple changes to a single update
to reduce path change churn. Helix’s average path installation time
was 60ms, which represents the time it took to compute and apply
the inter-area path modifications to the data plane.

Instance Join Time: During stage (b), we observed that Helix’s
average cluster join time was 1.0 seconds, while the instance’s
startup time was 426ms. After starting up, the controller instance
entered the initiation phase, which terminated early in under 5ms.
Early termination is a Helix optimisation for the leader election
process. A Helix controller exits its initiation phase once 𝜏𝑖𝑛𝑖𝑡 =

𝜏𝑘/2 seconds have elapsed or a primary instance for the cluster was
detected (early termination). The switch enter time, whichmeasures
the time it took all the switches to connect to the controller instance
from startup, was 522ms. The role change time was 11ms, which is
closer to the configured experiment latency. In our experiments, the

role change time for the failure recovery stages (a and c) was larger
(35ms) due to increased control-channel load during the scenario.
The internal controller threading and Ryu’s asynchronous message
processing mechanism introduced delays when dealing with more
control-channel messages, causing the observed slight increase in
role change time.

7 EVALUATION: TE OPTIMISATION
We evaluated the performance of Helix’s TE optimisation algorithm
using YATES [32], a simulation framework. YATES models link
forwarding behaviour by calculating the total traffic on every link
of a topology. YATES simulates network traffic using a TE matrix
that contains multiple iterations (rows) and specifies the amount
of traffic each source-destination pair is sending (column). YATES
runs every iteration for 𝑇𝑠𝑖𝑚𝑡𝑖𝑚𝑒 simulation units. A simulation
unit represents a repetition of the simulation loop.

YATES provides support to simulate offline TE algorithm be-
haviour. At the start of each iteration, YATES calls the algorithm
to compute a routing scheme based on estimated traffic demands
(prediction TE matrix). In contrast, Helix uses a reactive TE algo-
rithm that performs TE optimisation during runtime. We, therefore,
extended YATES to support simulating reactive TE algorithms.

Other TE Algorithms: We compared the performance of He-
lix’s TE optimisation algorithm against three commonly used load
balancing (ECMP, VLB [51], Raeke [42]) and three TE algorithms
(CSPF, MCF [16, 22, 25, 54] and SWAN [22]) provided by YATES.

TestingMethodology:Our experiment configuration attributes
were a 𝑇𝑠𝑖𝑚𝑡𝑖𝑚𝑒 of 500 simulation units with a Helix TE/max link
usage threshold of 95%, and a Helix poll interval of 100 units.

We collected results using the AT&T MPLS topology (size: 25
nodes and 56 links), which is representative of a medium-sized
WAN, from the Internet Topology Zoo Project [29]. We used YATES
to generate TE matrices with realistic traffic patterns [32]. All three
of the YATES TE algorithms performed offline TE optimisation
using a prediction matrix. In our evaluation, we used prediction
matrices that contained no errors. Prediction errors can increase
congestion and degrade performance.

We evaluated TE optimisation performance by introducing con-
gestion into the network and measuring the percentage of traffic
lost during an iteration. We also evaluated the overall forwarding
stability of the TE algorithms by looking at the number of path
changes performed per iteration. Performing frequent path changes
decreases system stability and throughput by causing packet re-
ordering. In our experiments, we showcased the ability of the tested
algorithms to deal with more congestion by collecting results with
three gradually increasing matrix multipliers. To do this, we first
found a multiplier that scaled the TE matrix sufficiently to cause
congestion loss and then gradually increased its value.

Results: Unsurprisingly, because load balancing algorithms do
not split traffic based on congestion or a prediction matrix, all tested
load balancing algorithms performed poorly. With a multiplier of
500x, VLB (the best performing load-balancing algorithm) experi-
enced congestion loss during all iterations with a max loss rate of
20% compared to no loss for 57% of iterations and a max loss rate
of 14.1% for SWAN (the worst-performing TE algorithm). Despite
outperforming the load balancing algorithms, SWAN experienced
more congestion loss compared to Helix, CSPF and MCF. Due to



SOSR ’21, October 11–12, 2021, Virtual Event, USA Zaicu, et al.

0.6

0.7

0.8

0.9

1

0 4 8 12 16

CD
F

Loss %

CSPF
MCF
Helix

0
0.2
0.4
0.6
0.8
1

12000 400 800

CD
F

# Path Changes

(a) 500x

0.6

0.7

0.8

0.9

1

0 4 8 12 16
CD

F
Loss %

0
0.2
0.4
0.6
0.8
1

12000 400 800

CD
F

# Path Changes

(b) 550x

0.6

0.7

0.8

0.9

1

0 4 8 12 16

CD
F

Loss %

0
0.2
0.4
0.6
0.8
1

12000 400 800

CD
F

# Path Changes

(c) 600x

Figure 4: AT&TMPLS - CDF graphs showing congestion loss
% and the number of path changes per iteration (top three)
using three TE matrix traffic multipliers for 200 iterations.

space constraints, this section will only present results for the top
three performing algorithms (Helix, CSPF and MCF).

Figure 4 shows a CDF graph of congestion loss (top row) and path
change churn (bottom row) observed on the AT&T topology. With
a multiplier of 500x (figure 4a), Helix performed similarly to CSPF,
with no congestion loss reported for 91% of iteration versus 92.5%
for CSPF. For 99% of iterations, Helix observed a 1.6x decrease in
congestion loss compared to CSPF (0.9% loss rate compared to 1.4%).
The maximum loss rate was higher for Helix, 3.0% compared to 1.8%
for CSPF (reported during the first iteration when Helix started with
non-optimised paths). Helix outperformedMCF, which experienced
no congestion loss for 85% of iterations and 4.6% maximum loss
rate compared to Helix.

Increasing the multiplier to 550x (figure 4b), we observed a slight
performance improvement for Helix compared to the other algo-
rithms (1.6x decrease in congestion loss for 97.5% of iterations).
Helix’s maximum congestion loss rate was also 1.3x lower (4.6%
versus 5.6% for CSPF). The performance difference between Helix
and CSPF slightly widened with a 600x multiplier (figure 4c).

While we observed a marginal decrease in congestion loss when
using Helix compared to the other TE algorithms, Helix performed
significantly fewer path changes, 12x fewer compared to CSPF (36
versus 414) and 29x fewer compared to MCF (36 versus 1034). This
pattern carried on when increasing the multiplier, Helix performing
at most 60 and 45 path changes (per iteration) compared to 408 and
400 for CSPF. The slight drop in path change churn when increasing
the traffic multiplier was caused by the TE algorithms not being
able to resolve all congestion due to the increased load (implying
fewer path modifications). We can confirm this inference by looking
at the congestion loss results.

Limitations of Results: YATES was not intended to test decen-
tralised systems. YATES cannot reason about the convergence of
distributed protocols or performance during state distribution [32].
As such, we consider that YATES overestimates performance. We
would also like to point out that methods such as CSPF and MCF,
use a prediction matrix to compute paths. Prediction matrices are
difficult to generate and may include errors [3]. We collected results
using prediction matrices that contained no errors, implying that
the algorithms were fully aware of the exact amount of traffic sent
between hosts. Prediction errors can lead to congestion loss if the

TE algorithm does not reserve sufficient spare capacity on links to
deal with the extra traffic, while reserving too much can prevent
the algorithm from finding a solution to resolve congestion.

8 CONCLUSION & FUTUREWORK
Deploying TE in the context of MCSDN is challenging due to state
and consistency requirements. In this paper, we designed and im-
plemented Helix, a Hierarchical MCSDN system that addresses
performance, robustness, and consistency concerns of deploying
TE on WANs. Helix tolerates high inter-device latency and im-
proves its robustness to controller failures by offloading operations
(such as inter-area TE and failure recovery) closer to the data plane.
Helix uses a proactive failure recovery mechanism that decreases
recovery time and reduces packet loss.

Our experiments showed that failure detection made up over 90%
of Helix’s instance failure recovery time and over 70% of the area
(cluster) recovery metric. Helix’s failure resilience performance is
affected by the selected configuration. Decreasing 𝜏𝑘 (keep-alive
timer) to 200ms will reduce Helix’s failure recovery time to 340ms
(4x faster compared to our results) while setting 𝜏𝑙𝑙𝑑𝑝 to 100ms
(setting 𝜏𝑖𝑎𝑝 to 500ms) will reduce area failure recovery to 1.6s.

Under heavy traffic load, Helix reduces congestion loss by up to
1.6x compared to CSPF while performing 12x fewer path changes.
We can attribute the improvement in performance to Helix’s TE
algorithm, which reduces its candidate search space. This reduc-
tion decreases the number of path changes performed and enables
Helix to find solutions under heavy traffic loads, decreasing con-
gestion. Helix’s approach to TE provides three benefits that make
it suitable for deployment on WANs. (1) performing fewer path
changes improves the forwarding stability of the system as fewer
disruptions of in-flight packets occur. (2) constraining the candidate
search space reduces strain on controllers by decreasing CPU load
(improves scalability). (3) Helix’s TE algorithm supports offloading,
which mitigates state consistency and performance problems.

While we have comprehensively evaluated Helix, we omitted
parts of our evaluation from this paper due to space constraints.
We evaluated Helix’s data plane failure resilience (protection mech-
anism) and compared it against restoration recovery. We found that
Helix outperformed restoration irrespective of latency and thus is
a well-suited technique for use in WANs. With a control-channel
latency of 20ms, Helix recovered from failures 10x faster compared
to restoration recovery. As stated in the failure resilience section,
we also defined and evaluated Helix’s performance under cascad-
ing failures. Our cascading failure results and observations were
consistent with the results presented in this paper. The complete
failure resilience results also included an evaluation of Helix’s new
area detection performance. Finally, we also assessed Helix’s TE
optimisation performance using the Abilene network from the In-
ternet Topology Zoo Project [29]. Similar to the results presented
in this paper, Helix experienced less congestion loss and performed
fewer path changes compared to the other tested algorithms. We
leave publishing these results and expanding on Helix’s evaluation
as future work. To support reproducibility and encourage further
research, we make the emulation framework and Helix’s source
code available at [1].
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