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Dynamic Property Enforcement in
Programmable Data Planes

Miguel Neves , Bradley Huffaker, Kirill Levchenko , Member, IEEE, and Marinho Barcellos

Abstract— Network programmers can currently deploy an
arbitrary set of protocols in forwarding devices through data
plane programming languages such as P4. However, as any other
type of software, P4 programs are subject to bugs and misconfigu-
rations. Network verification tools have been proposed as a means
of ensuring that the network behaves as expected, but these tools
frequently face severe scalability issues. In this paper, we argue
for a novel approach to this problem. Rather than statically
inspecting a network configuration looking for bugs, we pro-
pose to enforce networking properties at runtime. To this end,
we developed P4box, a system for deploying runtime monitors in
programmable data planes. P4box allows programmers to easily
express a broad range of properties (both program-specific and
network-wide). Moreover, we provide an automated framework
based on assertions and symbolic execution for ensuring monitor
correctness. Our experiments on a SmartNIC show that P4box
monitors represent a small overhead to network devices in terms
of latency, throughput and power consumption.

Index Terms— P4, SDN, programmable networks, network
debugging, monitoring.

I. INTRODUCTION

PROGRAMMABLE data planes allow network operators
to modify the packet processing pipeline of network

devices to quickly deploy new protocols, customize network
behavior, and implement advanced network services. The
introduction of the P4 [1] programming language has greatly
lowered the barriers to doing so, bringing data plane program-
ming into the mainstream. Over the last years, an ecosystem
of data plane software has emerged (e.g., [2], [3]), and we can
expect to see network devices running code written by teams of
developers across multiple organizations, assembled by a net-
work operator from libraries and modules, in the near future.

Despite the simplicity of its programming model, P4 pro-
grams have demonstrated to be prone to a variety of bugs
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and misconfigurations [4], [5]. As a result, network operators
need ways to ensure that the programs they produce behave
correctly in order to reap the benefits of a data plane software
ecosystem. Decades of progress in software engineering have
produced mature tools and methodologies for ensuring that
certain properties hold in a program, and this idea has been
gradually extended to the networking domain. State-of-the-art
network verification tools can take a model of the network,
its configuration, and a set of properties specified using
traditional formalisms (e.g., temporal logic or Datalog rules)
and automatically check whether these properties hold for any
packet [6], [7].

Although these tools have helped network operators to
identify bugs before they manifest, they still face important
issues that hinder their adoption in production networks. First,
most of these tools require programmers to manually model
data plane programs, which is a cumbersome and error-prone
task [7]. Second, these tools are usually restricted in terms of
the properties they can guarantee. For example, some of them
are specialized to the verification of reachability properties in
order to reduce verification times [8]. Third, more expressive
tools capable of verifying multiple properties frequently face
severe scalability issues (e.g., checking conformance with a
protocol specification can take days even for a single data
plane program [4]). Finally, programmers usually have to
be proficient in formal verification techniques for correctly
specifying their properties.

In this paper, we propose a novel approach to this prob-
lem which is based on dynamic (or runtime) enforcement
rather than static verification. While the former cannot always
provide the kind of strong correctness guarantees that the
latter can, it has several practical advantages. First, we do
not need to wait for the outcome of a long verification
process in order to push a new configuration out to the net-
work switches. In addition, runtime enforcement can promptly
intervene if problematic situations actually occur. It means
we can still extract some useful work from buggy code
when it behaves correctly, and perhaps repair problems
without disturbing any network service (see an example in
Section IV-B.2).

In contrast to static verification, run-time enforcement also
lets the developer express policy and mechanism using the
same programming environment as the rest of the program.
The value of this should not be underestimated: not only
does it make life easier for the developer, it also prevents
translation errors between implementation and policy domains.
That is, rather than expressing a property, such as loop-free
forwarding using a separate modeling or formal reasoning
language, the programmer can write code to enforce and verify
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the desired properties in the language of the program (i.e.,
P4 in our case).

To realize the benefits of our dynamic enforcement approach
we developed P4box, a system for deploying runtime monitors
in programmable data planes. A program monitor is a lan-
guage construct we developed (as an extension to P4) inspired
by the Aspect-Oriented Programming (AOP) paradigm [9]
which provides language-level constructs for attaching code
to designated points in an existing program without modifying
the program itself. Programmers can use monitors to modify
or verify the behavior of control blocks, parsers, and external
functions of P4 programs, and thus ensure they respect a set
of desired properties. Monitors are particularly well-suited to
the context in which data plane programs are assembled from
externally-maintained modules, where it may be desirable
to alter or verify the behavior of these modules without
modifying their code.

P4box instruments a P4 program with monitors at
compile-time in such a way that the former cannot circum-
vent or interfere with the latter. Moreover, monitors can be
combined to enforce more complex properties such as the
ones involving extraction and emission of labels on packets
(see an example in Section IV-B.1). In summary, we make the
following contributions:

❖ We design an extension to the P4 data plane program-
ming language, called a monitor, that allows a programmer
to specify properties about the network (using P4) in the
form of pre- and post-conditions to control-blocks, parsers
and extern functions (Section III).
❖ We develop P4box, a system for deploying runtime
monitors in programmable data planes by instrumenting
P4 programs at compile-time in such a way that the
former cannot be hindered, tampered or circumvented
(Section III).
❖ We show how P4box can be used to enforce several
networking properties, including packet well-formedness,
header protection, and waypointing (Section IV).
❖ We provide an automated framework based on asser-
tions and symbolic execution for allowing programmers to
check properties of interest on monitors (Section VI).
❖ We evaluate P4box on various applications running in a
SmartNIC and show that monitors impose low overhead to
network devices in terms of latency, throughput and power
consumption (Section VII).

This paper extends our earlier conference paper [10] by
describing our automated framework for ensuring monitor
correctness as well as the extensive set of experiments we
performed on a commodity SmartNIC. Also, we have updated
the related work to reflect the most recent advances we
found in the literature. Next, we review the architecture of
programmable network devices, summarize the main aspects
of P4 programs, and motivate the development of property
enforcement mechanisms in programmable data planes.

II. BACKGROUND AND MOTIVATION

A. Programmable Network Devices

Programmable network devices (a.k.a. targets) are packet
processing elements (i.e., switches, SmartNICs, NetFPGAs)

Fig. 1. Example of PISA-based switch. Dashed blocks can be programmed
in P4.

Fig. 2. Example P4 program.

that allow network programmers to configure their data
plane. These devices implement variations of an architecture
known as PISA (Protocol Independent Switch Architecture).1

PISA-based devices contain multiple programmable blocks,
which can be parsers, deparsers, match-action stages or queue-
ing systems. Figure 1 presents an example of a PISA-based
switch containing three programmable blocks (dashed boxes):
a parser, a match-action pipeline and a deparser. Each pro-
grammable block can be configured by developers using a
data plane programming language (typically P4), and the
organization and capabilities of these blocks are abstracted
to P4 programs as an interface or architecture model.

B. P4 Programs

As a domain specific language, P4 offers many constructs
to facilitate the specification of packet processing tasks. Pro-
grammers can, for example, declare packet headers, parsers,
tables, actions to modify packets, and control blocks to
compose sequences of tables. These abstractions are used to
configure different programmable blocks in network devices,
and the configuration of all blocks comprises a P4 program.
Figure 2 shows an example of a program for configuring the
PISA-based switch described in Section II-A. In this example,
the match-action pipeline block implements a single table that
routes packets based on their IPv4 addresses (l.8-15).

C. Data Plane Bugs

Although the simplicity of its programming model (e.g.,
P4 programs have no loops or dynamic memory alloca-
tion [1]), data plane programs have demonstrated to be prone

1https://p4.org/assets/p4-ws-2017-p4-architectures.pdf
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to many bugs and misconfigurations. Bugs in P4 vary in nature,
but overall they can be both generic bugs (i.e. well-known
from other programming languages) such as information over-
writing2 and data use-before-initialization,3 and also network
specific bugs such as the creation of malformed packets [8],
incorrect implementation of protocol specifications [5] or
policy violations due to bad table configurations. In this
context, it is essential to develop mechanisms that support
the development of secure and correct network data planes.
In particular, the myriad of static analysis tools available to
check P4 programs [4], [8], [11] cannot detect runtime bugs
(e.g., checksum implementation or platform-dependent bugs)
and thus a runtime verification tool becomes necessary.

III. P4box

P4box is a system that allows network programmers to
deploy runtime monitors in programmable data planes. Using
P4box programmers can attach monitors before and after
control blocks, parser state transitions, and calls to external
functions of a P4 program. Each monitor can modify the input
and output of the code block or function it monitors. This
enables the verification of pre- and post-conditions which can
be used to enforce specific properties or modify the behavior
of the monitored block. P4box inclines monitor code into
the monitored P4 program at the intermediate representation
level (i.e., during the compilation of the latter). The result-
ing program (original code plus monitors) then continues
the compilation as before, which allows P4box to be used
with any backend compiler based on the P416 reference
implementation. In the rest of this section, we provide an
overview of P4box and its runtime monitors (Section III-A),
and describe the three kinds of monitors P4box can deploy in
detail (Sections III-B, III-C, and III-D).

A. Overview

A runtime monitor interposes on the interaction of a
P4 control block or parser with the rest of the execution
environment (Figure 3), allowing the monitor programmer to
modify the behavior of the enclosed P4 block with the rest of
the environment. A P4 programmable block (either a control
block or parser) interfaces with the rest of the P4 execution
environment at entry into the block, return from the block,
and at calls to architecture-supplied external functions. In the
P4box programming model, when a programmable block is
invoked, control first passes to a monitor, also written in P4,
before passing to the intended programmable block. Similarly,
when a programmable block completes processing, control
first passes to the monitor before returning to the device. This
allows a monitor to modify the behavior of programmable
blocks in a well-defined way.

Monitors can also interpose on calls to external functions:
when a programmable block invokes an external function, con-
trol first passes to the monitor, then the function, and then back
to the monitor again, before returning to the programmable

2https://github.com/p4lang/switch/issues/97
3https://github.com/p4lang/switch/pull/102

Fig. 3. P4box programming model.

block. A monitor can thus modify the apparent behavior of an
external function. Monitors are declared and defined at the top
level of a P4 program, alongside control blocks, parser blocks,
and other top-level declarations. The syntax for a monitor is:

Each monitor is identified by a unique <name> and
may receive additional parameters (<param-list>) containing
headers and metadata in addition to the parameters of the
monitored object. Every monitor must be associated with a
data plane <object>, which can be a parser, control block or
extern function. The resource type defines the set of <p4-
statements> elements the monitor supports. Monitors can
have two types of methods, namely: before and after, which
specify code fragments that are executed before and after the
monitored resource, respectively. They can also contain local
declarations (e.g., actions, tables) visible inside the monitor but
not the monitored block. Following the P4 semantics, a local
declaration is visible only inside its enclosing monitor.4

Figure 4 shows the P4box workflow. The original P4 pro-
gram and P4 source files defining runtime monitors are
provided to P4box which combines the original program
with the monitors at the intermediate level to produce a
new program suitable for further compilation. At the end,
machine-level code containing all monitors is generated for a
variety of targets. During the instrumentation process, P4box
takes advantage of language features provided by P4 such as
separate scopes and namespaces in addition to static analysis
to provide the following guarantees for each monitor:
◦ Complete Mediation: The flow of execution of the original

data plane program will always pass through a monitor
(when one is defined by the programmer). This means it
is not possible for the original program to circumvent a
monitor.

◦ Non-Interference: The original program cannot interfere in
the operation of a monitor (e.g., by modifying its local

4It is possible to enable access from multiple monitors to the same data by
passing the latter as a parameter to the desired monitors.
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Fig. 4. P4box workflow.

Fig. 5. Example of control block monitor to enforce header protection.

variables or headers), which means monitors are completely
isolated from the data plane program.

Together, the complete mediation and non-interference
properties allow monitors to restrict what the original P4 pro-
gram is allowed to do even when the latter is untrusted
(e.g., a third-party program). Monitors are thus not only an
aspect-oriented P4 program structuring mechanism, but also a
software sandbox that can be used to encapsulate untrusted
or buggy P4 code. Next, we show examples and describe
each of the three kinds of monitors P4box supports in more
detail.

B. Control Block Monitors

P4box can attach monitors to top-level control blocks.
In this case, before and after contain statements that will be
executed at the beginning and the end of block, respectively.
Figure 5 shows an example of a control block monitor, which
could be used to detect and process information overwriting
bugs2. This monitor is responsible for ensuring that a header
is not erroneously modified by the data plane program. The
monitor is attached to the processing pipeline and has two
elements: i) before the programmable block, it collects state
from the original packet as soon as it is parsed (l.5-8); and
ii) after the block, it tests whether monitored headers were
modified (l.10-17). Local variables (i.e., visible only to the
monitor) are used to store protected headers (l.2-3). If the
monitor detects a violation, different actions can be performed
to enforce the desired property (e.g., restore the original header
value, notify the network controler, log an event), being up to
the programmer to decide what to do.

Fig. 6. Instrumentation of control blocks.

C. Parser Monitors

Parser monitors, on their turn, can be attached to top-level
parsers. As such, before and after can contain finite state
machines and both of them must have a start and accept
state. It is possible to specialize a parser monitor to a specific
parser state, in which case before and after are associated
only to the latter. An example of a parser monitor is shown
in Figure 11-lines 6 to 17, where the monitor is attached to the
parse_ethernet state and used to extract an enforcement header.
Parser monitors are also particularly useful for skipping the
extraction of packet bits that for some reason (e.g., confiden-
tiality) should not be visible to the data plane program.

D. Extern Monitors

Extern monitors are attached to extern calls. Their capa-
bilities are restricted to what actions can do in P4 because
of limitations the latter have on extern callers (e.g., it is
not possible to make local declarations or invoke a table
from inside an action). Similar to parser monitors, extern
monitors can also be specialized to subgroups of a resource.
In this case, a type signature is used to apply a monitor
only to a subset of the extern calls. An example is presented
in Figure 11-lines 20 to 24, where the extern monitor is
applied only to calls for emitting headers of type ethernet_t.
Unfortunately, P4box cannot distinguish between two or more
calls for an extern with the same type signature. In this case,
P4box emits a warning to the user whenever this situation
happens, so that the user can take the appropriate action to
deal with it. One option is to create a type alias (i.e., redefine
the same type with a different name) and then program
separate monitors to inspect them. Extern monitors are useful
to mediate how the data plane program interacts with the
platform underlying it.

IV. ENFORCING PROPERTIES

The value of a mechanism like P4box is best seen through
examples. In this section, we show how P4box can be used to
enforce several kinds of properties in the data plane. Generally,
these fall into two categories: program properties, which are
properties of a single program’s behavior, and network-wide
properties, which are properties of several network devices’
behavior.

A. Program Properties

Program properties concern the behavior of a program
running on an individual device. These properties must hold
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Fig. 7. Instrumentation of parsers.

Fig. 8. Instrumentation of extern calls.

regardless of how the device is configured or connected in
a topology. They are also referred to as network function
properties in the literature [12]. In this work, we consider
two types of program properties: generic safety properties,
which correspond to low-level properties related to the correct
operation of a data plane program (e.g., packet formation prop-
erties and use-after-initialization), and functional or semantic
properties, which guarantee the program conforms to a given
user-specification (e.g., an RFC). Below we show how we
enforce some program properties of interest, well-formedness
and header protection.

1) Well-Formedness: We assume the same definition for
well-formedness properties as [8]. That is, we are looking
for ensuring that the packets produced (i.e., emitted) by one
P4 program can be consumed by another according to a
given protocol (or protocol stack) definition. In practice, this
boils down to checking which headers are being emitted
and their particular order (one could also consider checking
the set of values each header can assume, though that also
fits into the context of functional or semantic properties).
Enforcing well-formedness invariants is particularly useful in
hybrid networks (i.e., networks containing both P4-enabled
and legacy devices), where the elements may not support the
same set of protocols. P4box can enforce well-formedness
properties (e.g., packets do not contain both an IPv4 and
IPv6 header, ICMP packets always have an IPv4 header) with

Fig. 9. Example topology for waypointing.

simple checks of header validity at the end of the processing
pipeline.

2) Header Protection: In some cases, it may be desirable
to ensure that a header is not modified by a forwarding device
or programmable block. For example, in a deployment where
VLANs are used to isolate potentially untrusted domains,
it may be necessary to provide strong assurance that a VLAN
tag is not modified by a forwarding device. P4box can be used
to ensure that headers are not modified by collecting the appro-
priate packet state at the beginning of the processing pipeline
(e.g., the value of a VLAN tag), and comparing it against
the emitted headers. Such properties can be easily extended
to allow only transformations to a pre-defined domain (e.g.,
source MAC can be modified only to a set of output interface
addresses).

B. Network-Wide Properties

Network-wide properties concern forwarding devices when
configured and connected in a particular topology [12]. These
properties may involve basic predicates (e.g., A can reach B)
as well as state and quantities (e.g., express desired behaviors
for networks containing middleboxes or having latency con-
straints). We now describe how P4box can enforce common
network-wide properties.

1) Waypointing: Network operators may want to force
packets to pass through a sequence of devices (waypoints)
before the network delivers them to an end host. P4box can
enforce waypoint properties by checking and updating labels
whenever these packets cross a device in the chain. As an
example, Figure 9 shows a scenario where packets coming
from an external network (i.e., through router R) must first be
inspected by an IDS system before arriving at a web server
(hosts H1–H3). In this case, a P4box monitor in R introduces
labels in each packet in order to enforce waypointing. These
labels are then updated by another monitor at switch S1,
and a third monitor checks them at switch S2 for dropping
packets that are destined to the web servers and do not contain
the updated tag (L1). Figure 10 shows how P4box interacts
with the P4 program to enforce waypointing, where vertical
arrows represent the flow of execution. Note that P4box traps
the program at three points: first, between the parsing of
the Ethernet and IPv4 headers, to check whether the packet
contains a label and extract the latter; second, right before the
beginning of the match-action pipeline, to operate on the label
(e.g., check, updates or remove) depending on how the device
is connected in the topology; finally, to emit the label during
the deparsing phase.
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Fig. 10. Interaction between P4box and the P4 program to enforce
waypointing.

Figure 11 shows a summary (with some parts omitted due
to space constraints) of the code used to enforce waypoint
properties. Each trap is programmed as a separate monitor.
Parser (l.6-17) and extern (l.20-24) monitors are employed to
extract and emit labels, which are declared in the wp_header
(l.2). Moreover, a control block monitor uses match-action
tables to insert, check/update and remove labels according to
the incoming/outgoing ports of the packet. P4box monitors
can be configured (proactive or reactively) to reroute packets
on-the-fly and correct property violations. Moreover, we can
extrapolate the labeling mechanism described above to enforce
path conformance (i.e., to guarantee that the actual path taken
by a packet conforms to the operator policy). In this case,
P4box monitors check and update packet labels on every hop.

2) Traffic Locality: Sometimes operators want to preserve
traffic locality, e.g., packets flowing between two VMs in the
same rack must not leave the top-of-rack switch in a data
center, or traffic between two hosts in the same autonomous
system should not leave its borders [7]. P4box can enforce traf-
fic locality by controlling the set of output ports a packet can
take. For example, packets from host A to B in Figure 12 are
not allowed to be forwarded to upper ports. Figure 13 shows
how P4box interacts with the P4 program to enforce traffic
locality. First, it hooks the flow of execution at the beginning
of the processing pipeline to save the state of required headers
(e.g., MPLS or IPv4) before the program can modify them.
Then, at the end of the pipeline, it uses the saved state as
well as information about the outgoing port to check whether
the packet can be forwarded. Figure 14 shows relevant parts of
the monitor used to enforce traffic locality. It contains a single
table that matches a set of control headers and the outgoing
port (l.8-16), and runs an enforce_locality action (e.g., send
the packet to a different outgoing port) when a violation is
detected (l.4).

V. PROGRAM INSTRUMENTATION

Control Block Monitors: P4box performs the instrumenta-
tion of control blocks in three steps: first, monitor parameters
containing headers and metadata are merged with parameters
of the monitored block (e.g., joining the fields of two structs
to create a super struct). If during this process P4box identifies
there is no feasible mapping, a message is emitted and

Fig. 11. Supervisor to enforce waypointing.

Fig. 12. Example topology for traffic locality.

Fig. 13. Interaction between P4box and the P4 program to enforce traffic
locality.

the instrumentation process is aborted. This is the case, for
example, when a monitor receives an “inout” parameter, but
the monitored block only supports “in” ones and proceeding
with the instrumentation would create a semantic mismatch;
second, before and after blocks as well as local declarations
are inserted in the monitored block; finally, a name resolution
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Fig. 14. Supervisor to enforce traffic locality.

pass maps monitor names to their new namespaces. The left
part of Figure 6 illustrates this transformation, where a generic
control block is instrumented with its monitoring primitives.
A corresponding example is shown on the right, represent-
ing the instrumentation performed to the monitor specified
in Figure 5. As a result of this transformation, all packets
crossing the control block also pass through the monitor since
P4 assumes network devices execute statements in order.

Parser Monitors: To instrument parsers, P4box takes into
account if before and after are attached to states or not. If not,
it assumes the start and end (i.e., accept) states of the mon-
itored parser as its hooking points. The left part of Figure 7
shows the transformations P4box applies. Assuming state Sk is
being monitored, P4box links the finite state machine specified
inside before (before_FSM) between states Sk−1 and Sk by
modifying state transitions. An analogous process is performed
for the finite state machine specified inside after (after_FSM),
linking it between states Sk and Sk+1. The right part of
Figure 7, on its turn, shows an example of these transforma-
tions, where P4box performs the instrumentation to the parser
monitor specified in Figure 11. Instead of transitioning directly
from state parse_ethernet to parse_ipv4, the execution flow
goes through states _M_START_ and parse_wp_header.

Extern Monitors: Finally, P4box instruments extern calls
by adding before and after blocks right before and after every
monitored call, respectively. The left part of Figure 8 illustrates
this transformation, where the same extern call appears twice
(inside an action and directly in the control block body). For
the particular case in which a monitor has a type signature,
only calls with that signature are instrumented. As an example,
the right part of Figure 8 shows the instrumentation to the
extern monitor specified in Figure 11.

VI. CHECKING MONITOR CORRECTNESS

Monitors are less likely to contain bugs compared to
P4 programs due to their smaller size. For example, a monitor
to enforce header protection has no more than a dozen of
lines of code while traditional P4 programs usually have
hundreds to thousands of lines (two to three orders of mag-
nitude larger) [4], [11]. Despite their simplicity, monitors are
still subject to bugs and misconfigurations though. For this

Fig. 15. Workflow for checking monitor correctness. M1, M2,
M3 = annotated monitors. a = monitor assembling. b = model extraction.
c = symbolic execution.

reason, we developed an automated framework for allowing
programmers to check invariants in their specified monitors.5

Our framework is inspired by assert-p4 [5], a state-of-
the-art tool for checking invariants in P4 programs. As for
assert-p4, our framework is also based on assertions and
symbolic execution (see Figure 15 for its workflow). First,
programmers annotate monitors with assertions expressing
properties of interest. For that, we consider the same assertion
language as proposed in [5], which is also a good fit to
our problem since monitors are comprised of P4 constructs.
The language enables the specification of basic predicates
(there is no support for quantifiers) and includes elements
for expressing logical, relational and arithmetic expressions,
as well as conditional statements and basic tests involving
packet headers (e.g., whether a header was extracted from a
packet or not). As shown in our previous work [5], this can
be used to specify a wide set of properties, both program (or
monitor) dependent (e.g., output port is set to “local” port) and
generic ones (e.g., packet header is not modified). Assertions
can only contain monitor-private variables. However, it is
possible for a monitor to hook the state of a program variable
(e.g., through an assignment) and store it in a monitor-private
one. In such a case, the program variable is treated as input to
the monitor and thus made symbolic at the beginning of the
verification process.

Once annotated, monitors are assembled in a “virtual pro-
gram” respecting the same order of execution as the moni-
tored code. This means if monitors A and B are monitoring
programmable blocks X and Y , respectively, and X runs
before Y , then A will precede B. In addition, the assembled
code also contains all header and metadata definitions from
the original program, which similarly to program variables
are also treated as symbolic inputs by the verification engine
and enable programmers to check invariants on monitors that
manipulate program state (e.g., change a header value). After
the assembling phase, the new virtual program is translated
into an equivalent model in C, and assertions are checked using
a symbolic execution tool.

Translating monitors to C allows us to use an off-the-shelf
symbolic execution engine, e.g., KLEE [13], to check the
desired properties. Moreover, tools to ensure the correctness
of the translation process are also available.6 As an example,

5The procedure our framework implements is restricted to monitors and
should not be used to check invariants about the program as a whole.

6https://github.com/gnmartins/assert-p4
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Fig. 16. Equivalent model in C to the monitor described in Section III-B.

Figure 16 shows the resulting model for the monitor described
in Section III-B (we omit some parts for the sake of simplic-
ity). The main code (lines 25-32) controls the call order for the
monitors, which are on their turn modeled as additional func-
tions (lines 14-23). We make all monitor inputs (i.e., packet
headers, metadata and protected state) symbolic (lines 8-11),
so that they can be comprehensively checked by the symbolic
execution engine. Local monitor definitions (e.g. variables and
match-action tables) are modeled as unique global constructs
(lines 4-5). Finally, each assertion is modeled independently,
and usually involves variables that are set and tested at relevant
points in the program. For example, the assertion modeled in
lines 16 and 30 checks whether the monitor, which should
ensure a packet header is not modified, is not itself erroneously
modifying the header. We refer to [5] for more details on the
translation process.

Performance: One of the key concerns in automated testing
is performance as not rarely the cost of checking a program
invariant becomes prohibitive in practice. For example, sym-
bolic execution is particularly known for its path explosion
issue [14] and other techniques also have their own drawbacks
(e.g., the state space explosion problem in model checking [15]
or large logical formulas in SMT solving [11]). A few tech-
niques (e.g., program slicing and directed symbolic execution)
have been proposed to reduce this burden in the context of
P4 programs, but it still takes hours or even days to check a
relatively complex program instance [4], [5].

To demonstrate the scalability of checking monitor invari-
ants using our approach, we applied our framework to check
basic semantic properties (i.e., show that monitors in fact
meet their desired behavior) on the monitors described in
Section IV. We run our experiments in a single-core virtual
machine equipped with 4GB of RAM and Ubuntu 18.04.

Fig. 17. Testbed topology. Dashed arrows represent the data flow. Solid
arrows indicate control traffic (e.g., for programming the NIC firmware using
P4 and collecting statistics).

We used KLEE 2.0, the Z3 solver, and LLVM 6.0 as the
symbolic execution engine. In each case, our framework was
able to check the whole input space in less than a second.
This is mainly because of the small size of monitors, which
typically result in no more than a few hundred execution paths.

VII. EVALUATION

Because dynamic enforcement happens at run time, it may
impose a performance penalty compared with static verifica-
tion. In this section, we analyze the performance overhead
of P4box and show it is small for many useful properties
and applications. We implemented a prototype of P4box
by extending the P416 reference compiler.7 Our system has
around 1.5K lines of C++ code and is publicly available.8

We modified the front-end compiler to instrument programs by
adding additional passes over their intermediate representation.
Our examples and the workloads used in our experiments are
also available online.

Figure 17 shows the topology of the setup for evaluating
P4box. The device under test (DuT) is equipped with a 4-core
Intel Core i3 530 2.93GHz CPU and a single-port 40G Agilio
CX smart NIC running in breakout mode (i.e., 4×10G virtual
interfaces). The traffic generator, on its turn, contains a 4-core
Intel Xeon E31220 3.1GHz CPU and two dual-port 10G Agilio
CX NICs. We configure the traffic generator with Moon-
Gen [16] and use a single interface in each NIC for sending
and receiving traffic respectively, leaving the other interfaces
unused. Unless explicitly mentioned otherwise, our analy-
ses consider the traffic generator creates a 10 Gbps stream
of 64-byte UDP packets (∼14.8 million packets per second).

All P4 programs run as embedded firmware in the DuT
NIC and are isolated from other end host resources (e.g.,
CPU, memory and operating system). We use P4box to
create instrumented P4 programs and then the Netronome
P4 compiler with MAC timestamps and shared content stores
enabled to convert instrumented programs into target specific
code. Except for Section VII-A, in which we analyze the
cost of enforcing each property separately, all our experiments
assume P4box instruments data plane programs with the four
properties described in Section IV, so that we could measure
overheads in more demanding conditions.

We measure throughput, latency and power consumption to
compare the forwarding performance of the device under test
with and without P4box. To measure throughput, we count the

7https://github. com/p4lang/p4c
8https://github.com/mcnevesinf/p4box
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TABLE I

AVERAGE, 5TH AND 95TH-PERCENTILE LATENCY COST
OF THE PROPERTIES DESCRIBED IN SECTION IV

number of packets processed in the NIC each second using
a P4 counter. We report the average of 10 runs where each
run lasts for 30 seconds. To measure the packet processing
latency, we collect NIC ingress/egress timestamps and report
results over 100 packets. Finally, we use the automated script
provided by Netronome (nic-power) to read the board power
consumption every 100 milliseconds, and similarly to latency
measurements also report results over 100 reads. All measure-
ments are performed after a 5 seconds warm-up interval.

A. Property Overhead

We start looking at the overhead of each property in
isolation. To evaluate this overhead, we instrumented a very
simple data plane program (L3 routing – see Table II) with
P4box configured to enforce a single property, and measure the
performance drawback compared to a baseline (i.e., the same
program without any instrumentation). Table I shows the
latency overhead, in microseconds, for enforcing the properties
described in Section IV.9 As we can see, the overhead is
under 5 µs even when we consider all properties together –
last line in the table. This is at least one order of magnitude
smaller than the latency cost for processing a packet in many
data plane applications (see Section VII-B). Also, the overhead
is clearly not additive, meaning the cost for enforcing a
combination of properties is not the same as the sum of
the cost for enforcing the individual ones. This is because
P4box can employ resource sharing among monitors (i.e.,
the same monitor can be used to ascertain more than one
property) in order to optimize their performance. For example,
two properties that involve storing and checking the same
program state (e.g., IP source value) could take advantage of
a common monitor to store this information.

B. Application Performance

Next, we evaluate the forwarding performance of the device
under test while running real-world applications instrumented
with P4box. We select instances of 4 popular applications
across different domains: (1) L3 routing, which forwards pack-
ets based on destination IP addresses [17]; (2) Load balancing,
which uses Othello hashes for mapping virtual IPs (VIPs) to
destination servers (DIPs) [18]; (3) DDoS detection, which
adopts counting sketches to identify malicious flows [19]; and
(4) Surveillance protection, which encrypts IP addresses to

9For well-formedness we are checking header emissions (i.e., whether
incoming and outgoing packets have the same headers) as no header should
be removed or added in the application we run.

Fig. 18. Average throughput for the evaluated applications. Standard
deviation is less than 0.1 Mpps.

Fig. 19. CDF of the packet latency for the evaluated applications.

obfuscate information about Internet users and devices [20].
Table II summarizes the P4 programs implementing these
applications. Each program has a distinct number of matching
tables, which results in different pipeline depths. Moreover,
three of the programs do not manipulate any persistent state
in the device while the remaining one uses registers for storing
packet counts.

Figure 18 compares the throughput of the device under
test for the evaluated applications. In all cases, the overhead
for running P4box is small, representing a throughput drop
of about 9% (1.4 Mpps) for load balancing, 6% (0.9 Mpps)
for surveillance protection and 0.7% (0.1 Mpps) for DDoS
detection. Interestingly, there was no noticeable overhead for
L3 routing as this application was able to achieve line rate in
both scenarios.

Figure 19 compares the cumulative distribution of the packet
processing latency for the different applications. As can be
seen, P4box implies a small latency overhead for packets.
For example, the increase in the median latency is below
20% in all cases (4% for DDoS detection, 15% for load
balancing and 19% for surveillance protection). Results are
similar when we look at the tail latencies, with an overhead
smaller than 15% at the 99th percentile in the worst case (for
load balancing). Overall, the more complex the application
the lower the penalty for running P4box. That is, the cost of
a P4 program (e.g., in terms of latency and throughput) is
directly proportional to the number of elements it contains,
which is also true for P4box monitors. In this case, the bigger
the difference between a P4 program and a set of monitors in
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Fig. 20. 95-percentile tail latencies at different packet rates.

TABLE II

EVALUATED APPLICATIONS. LOC = LINES OF CODE

terms of the number of operations they perform, the lower the
performance penalty the set of monitors implies.

C. Effect of Packet Rate

We now turn our attention to examining how different
packet rates affect P4box. We consider a maximum load sce-
nario in which the traffic generator sends traffic at the constant
rate of 10Gbps, but changes the packet size and consequently
the number of packets sent per unit of time. For example,
the traffic generator can send up to 14.8 million 64-byte
packets per second, but this number reduces to approximately
1 million if it instead sends packets of 1500 bytes.

Figure 20 compares the 95-percentile tail latency for differ-
ent applications as a function of the packet rate. P4box over-
head is negligible up to 5 Mpps. This is because NIC
resources are not overloaded at low rates. Above 5 Mpps,
P4box increases tail latencies around 20% as a result of
bottleneck on NIC. This bottleneck is more prominent in
computing-intensive applications such as DDoS detection,
where higher processing demands per packet induce a head-
of-line (HOL) blocking and consequently queueing formation
at input ports [21].

D. Power Consumption

Finally, we evaluate how P4box affects the SmartNIC power
consumption. First, we measure the overhead for different
link utilizations. We start with an idle system, and gradually
increase the input rate until it achieves full link capacity
(10 Gbps). Figure 21 shows the results for the L3 routing
application. As we can see, P4box overhead is smaller than
5% (0.4W) even in the worst case (i.e., when link utilization
is maximum). Moreover, this overhead slightly decreases for
lower utilizations.

We also measure the overhead for different applications and
packet rates. In this case, we consider a line rate scenario
where different packet sizes result in different packet rates,

Fig. 21. Average SmartNIC power consumption for different link utilizations.
Standard deviation is less than 0.1W.

but do not affect the link utilization (always 100%) - similarly
to the analysis performed in Section VII-C. Table III shows
that P4box increases power consumption less than 0.5W for all
applications. Interestingly, the overhead is smaller for higher
packet rates. We believe this is because of the increased
packet processing demand, which keeps more processing units
(called Micro Engines - MEs in Netronome ASICs [22])
active/occupied along time for both approaches (i.e., with and
without P4box).

E. Scalability

The SmartNICs (Netronome NFP 4000) available to the
experiments did not have enough resources to run switch.p4,10

so we could not directly assess the impact of P4box monitors
on the most complex existing data plane program. Neverthe-
less, we show in the following that monitors have low impact,
by looking at the amount of operations they perform [23].
Table IV shows the P4box performance overhead for enforc-
ing different properties compared to switch.p4. Column field
writes corresponds to operations such as adding and remov-
ing headers as well as field assignments in actions. Also,
we use variables to indicate parameters that can be adjusted
when enforcing each property. For example, header protection
requires one field write for saving the state of each protected
header (see lines 5-8 in Figure 5), in which case we represent
the number of protected headers as m. This number may
change from program to program. Other variables include
the number of header validity checks for enforcing well-
formedness, n, and the size of the labels attached to packets
for enforcing waypointing, p.

To put the numbers from Table IV into perspective,
switch.p4 has over 6K lines of code and, to process a tra-
ditional IPv4 packet, requires parsing 384 bits and applying
40 tables. In order to enforce waypointing, P4box requires
parsing only 8 bits (assuming p = 8) and applying 3 tables
which are specified in 80 lines of code. In terms of resource
consumption, this represents less than 3% additional memory
blocks, flip-flops and lookup tables, according to the litera-
ture [24], if we consider a NetFPGA-based switch (assuming
key sizes of 72 bits and a hash-based associative memory
implementation).

10https://github.com/p4lang/switch/
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TABLE III

AVERAGE POWER CONSUMPTION (IN WATTS) AT LINE RATE FOR DIFFERENT APPLICATIONS. STANDARD DEVIATION IS LESS THAN 0.1W

TABLE IV

P4box PERFORMANCE OVERHEAD COMPARED TO SWITCH.P4.

n = #CHECKS, m = #PROTECTED HEADERS, p = LABEL SIZE

VIII. DISCUSSION

Concurrency Bugs: P4box cannot detect concurrency bugs
as it works at the P4 level and thus cannot control access from
program blocks to shared state (the only mechanism P4 allows
for that is the @atomic annotation which must be specified at
compile time). One option could be creating externs to perform
concurrency control and then invoke them inside monitors,
but those would be target-dependent mechanisms. Regarding
concurrency bugs in monitors themselves, before and after
blocks are comprised of P4 constructs (e.g., actions and block
statements) and thus also support @atomic annotations. How-
ever, at present our monitor verification process cannot ensure
concurrency properties (e.g., safety and liveness properties).
We leave both points for future investigation.

Optimizing Monitors: P4box relies on network programmers
to manually optimize monitors (e.g., by eliminating duplicate
operations such as storing the same packet state multiple
times) in order to reduce their overhead. However, it would
be feasible to automate such optimizations (or at least part
of them) by using techniques such as static analysis [25] and
program profiling [26]. This would however introduce new
challenges in terms of ensuring semantic equivalence among
original and transformed monitors, whose solution we leave
as future work. Code optimization techniques could also be
used to offload parts of the P4 program (or a monitor) to the
control plane when dealing with resource-constrained targets.

Enforcing Other Properties: Overall, monitors have the
same expressiveness as a P4 program, since both are com-
prised of P4 blocks. This means it would be possible, for
example, to enforce stateful properties using registers or
quantitative ones by using monitors to implement rate limiters.
Some properties may be more difficult to express/enforce than
others. For instance, enforcing network isolation can be as
easy as checking an output port, while enforcing reachability
among end hosts may require deploying a whole routing policy
inside the monitor space. Expressing low level-properties (e.g.,
basic safety checks or platform-dependent properties) can be

particularly challenging as P4 does not have much control
of a target’s operation. One option could be implementing
externs to check this kind of property in a particular target
and then invoking them inside monitors. We leave a detailed
investigation on how to use P4box to enforce other relevant
properties as future work.

Mining Monitor Specifications: The time needed for speci-
fying properties using P4box actually depends on the expertise
of the network programmer as well as the number and kind
of properties she wants to specify. In this sense, we believe
P4box can greatly reduce specification costs compared to other
tools (e.g., theorem provers) as it allows programmers to
express properties using a toolset they are already familiar
with (i.e., the P4 language). Moreover, programmers can
create libraries of monitors that might be reused for different
programs depending on the enforced property (e.g., isolation
among end hosts does not require any knowledge about the
underlying packet processing logic). Even when specifying a
property does require advanced knowledge about the P4 pro-
gram (e.g., in a semantic property), there exist alternatives
for automatically mining specifications from network con-
figurations/programs (e.g., [27], [28]) that could be used to
synthesize monitors, but this investigation is out of scope.

IX. RELATED WORK

Network Verification: Many tools have been proposed for
verifying that a network behaves as expected. Moreover,
these tools focus on either the control or the data plane.
Minesweeper [6], Tiramisu [29] and Plankton [15] use models
of networking protocols (e.g., BGP and OSPF) to analyze the
network control plane. Although they can check multiple data
plane configurations with this approach (i.e., the ones resulting
from different protocol interactions), they are either restricted
to a limited number of protocols or require long times for
verifying large networks. Veriflow [30], APKeep [31], NoD [7]
and SymNet [32], on the other hand, are data plane veri-
fiers. They take a single data plane configuration (i.e., set
of forwarding rules) as input, and check whether certain
properties hold for all possible packets. Data plane verification
approaches are typically not tied to any specific protocol, but
network programmers need to manually build a separate model
for each data plane program, which may be a cumbersome and
error prone task.

P4v [11] and ASSERT-P4 [5] can automatically verify
P4 programs, but they are able to check only program-specific
properties. Vera [4], P4Nod [8] and P4K [33] create models
for data plane programs that can be used as input to SymNet,
NoD and the K framework, respectively. Although they can
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quickly verify small data plane programs (i.e., in the order
of seconds), the verification time grows exponentially with
both the program and the network size. bf4 [34] combines
static verification, code changes and runtime checks, using
static analysis to create a set of possible bugs and attempting
to find predicates that, when applied to table rules inserted
by a SDN controller, makes bugs in question unreachable.
Finally, p4pktgen [35] and p4rl [36] generates test packets
for P4 programs. As for P4box, they can detect runtime
bugs that are hard to find using static analysis techniques.
However, these approaches are focused on a single data plane
program.

Network Debugging: Another dynamic approach to ensure
security and correctness properties in networks is debugging.
This approach is essentially based on monitoring and col-
lecting statistics from network devices to perform an offline
analysis. For example, Marple [37] proposes a query language
for specifying monitoring tasks. Stroboscope [38] extends
this idea and also considers scheduling to meet resource
constraints. KeySight [39] aggregates packets with identical
behaviors and generates one “postcard” per behavior. Pack-
etScope [40] allows queries to affect packets inside the data
plane, helping with debugging. In [41] authors present a
data-plane primitive which encodes metadata in packets to
track their path. Instead of monitoring and collecting data,
P4box processes information embedded on packets in switches
at runtime. This design enables our mechanism to promptly
react to property violations, containing them before they com-
promise a network policy. In-band Network Telemetry (INT)11

provides flexibility similar to ours. However, it assumes
information embedded on packets cannot be compromised
by buggy or malicious data plane programs. P4box, on the
other hand, creates an isolated environment that can be used
by network programmers to securely enforce policies of
interest.

Runtime Enforcement: The idea of using runtime monitors
to enforce properties was first introduced by [42] in the context
of system security more than forty years ago. In computer
networks, FlowTags is a seminal work that proposed to extend
middleboxes to add tags on packets which would be used
by switches to enforce path conformance and origin bind-
ing [43]. However, unlike P4box, it does not take data plane
programs and all possible bugs that come with them into
account.

X. CONCLUSION

P4 and programmable data planes lowered the barrier
for innovation in networking, but at the same time also
made networks more prone to bugs and misconfigurations.
To solve this problem we proposed P4box, a system for
dynamically enforcing properties in programmable data planes
through runtime monitors. P4box can enforce both program
and network-wide properties while requiring a small effort
from network programmers. Moreover, it represents a small
overhead to network devices in terms of latency, throughput
and power consumption.

11https://p4.org/assets/INT-current-spec.pdf
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