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Volumetric Distributed Denial of Service (DDoS) attacks have been a severe threat to the Internet for more than

two decades. Some success in mitigation has been achieved based on numerous defensive techniques created

by the research community, implemented by the industry, and deployed by network operators. However,

evolution is not a privilege of mitigations, and DDoS attackers have found better strategies and continue to

cause harm. A key challenge in winning this race is understanding the various characteristics of DDoS attacks

in network traffic at scale and in a realistic manner.

In this paper, we propose DDoS2Vec, a novel approach to characterise DDoS attacks in real-world Internet

traffic using Natural Language Processing (NLP) techniques. DDoS2Vec is a domain-specific application of

Latent Semantic Analysis that learns vector representations of potential DDoS attacks. We look into the link

between natural language and computer network communication in a way that has not been previously

studied. Our approach is evaluated on a large-scale dataset of flow samples collected from an Internet eXchange

Point (IXP) in one year. We evaluate the performance of DDoS2Vec via multi-label classification in a Machine

Learning (ML) scenario. DDoS2Vec characterises DDoS attacks more clearly than other baselines — including

NLP-based approaches inspired by recent networks research and a basic non-NLP solution.
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1 INTRODUCTION
DDoS is a class of attack that aims to cause disruption [32]. Volumetric DDoS attacks [44, 15, 20, 21,

35] do severe damage every year; companies are obliged to use substantial capital to pay for defensive

systems [59, 60]. Detecting and mitigating the effects of DDoS attacks has been a continuous battle

since the early days of the Internet [36, 26, 22]. Despite all the efforts made by research, industry,

and legal authorities, it would be naïve to hope to eradicate these attacks for good or create a perfect

protection system against them. Attacks have been evolving regarding techniques, exploitation

vectors, actors, etc. Instead, we must continuously advance our understanding of attacks and

improve defences.
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Unlike prior work, we focus on characterising DDoS attacks, i.e. establishing the features that

distinguish one attack from another attack. Such features include the amplification attack protocols,

prominent packet sizes, variance in an attack over time, and many other nuances in real-world

DDoS attacks. DDoS attack characterisation opens the path for attack similarity analysis, the

discovery of new attacks, attack history investigations, recent attack trends, etc., which can be

beneficial besides immediate attack mitigation.

However, characterisation is challenging as DDoS attacks can be diverse [15], and ground truth

is key for evaluation [56]. Prior proposals to analysing traffic in general for security purposes have

involved packet payload content (complete packet captures) [17, 2]. Most ignore real-world data

constraints, such as resource limitations, i.e. computational and storage costs [4], and encrypted

payloads [49]. In contrast, we follow [56, 54, 47, 35, 20, 10] and rely on sampled flow records captured
at line rates either at the core of the Internet (e.g. IXPs) or at the edges (ingress points of potential

victims). The flow records are collected, sampled, and stored using standard methods, such as sFlow

[37] and NetFlow [6], which network operators widely employ [16]. Unfortunately, having sampled

flow records as input significantly reduces the information available for analysis, which makes

DDoS characterisation even more challenging.

In this paper, we propose DDoS2Vec, a novel yet pragmatic approach towards flow-level UDP-

based DDoS attack characterisation at scale with a main focus on amplification attacks. DDoS2Vec

uses NLP techniques to extract potential attack characteristics based on traffic patterns and sampled

flow record proximities over long periods. The intuition of exploring NLP for this problem is based

on recent networks research [12, 7, 41]. DDoS2Vec learns a vector representation of a potential

attack toward an IP address in a given timespan, which can then be contrasted with other vectors

to identify similarities and differences. Our results show that DDoS2Vec can characterise DDoS

attacks more clearly than our baseline approaches in challenging circumstances, where all common

or rare characteristics of potential attacks must be identified. The contributions of this paper can

be summarised as follows:

• We examine the state of publicly available DDoS datasets regarding DDoS research (§3).

• We provide a fresh perspective on DDoS attack characterisation by applying NLP concepts

to network flow records. To do that, we consider the similarities between flow records and

text sentences/documents (§4), and do so at scale.

• We investigate multiple NLP techniques (along with a non-NLP baseline) for DDoS attack

characterisation and evaluate using real-world IXP traffic combined with suitable ground

truth (§5).We assess the trade-offs betweenWord2Vec [31], Doc2Vec [24], and Latent Semantic

Analysis [11], the last of which is used in DDoS2Vec.

• We evaluate to which extent characteristics learnt by a DDoS2Vec model are applicable

(“transfer”) to other periods (§6). We cover a whole year’s worth of IXP flow samples for the

longitudinal analysis.

2 RELATEDWORK
A large body of literature exists on traffic analysis for network security purposes, including surveys

(e.g. Aljuhani [1]) and prior proposals for DDoS attack detection and mitigation. Much less research

has been done on characterising DDoS attacks at scale. We now review research inspiring our

approach and other closely related work.

Prior work has shown that benign and malicious network traffic typically have different statistical

distributions [36, 22, 26]. While these approaches can detect the presence of DDoS attack traffic by

comparing it to a normal traffic profile, they do not provide a more significant analysis of attack

characteristics beyond mere abnormality.
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Approaches based on distance metrics and clustering have also been explored for network hosts

and flows themselves [30]. Xu et al. [58] showed that it is possible to learn general characteristics

from Internet infrastructure traffic. That work was used by Coull et al. [8] to show the importance of

capturing two relevant properties in one unified metric space: (i) spatial properties, as in capturing

the semantic relationship (if any) between, e.g. two different port numbers; and (ii) temporal
properties, as in capturing similarities beyond small windows of time.

Ring et al. [41] introduced IP2Vec, a method for learning vector representations of IP addresses,

ports, and protocols — all effectively represented as words. They showed that an approach inspired

by Word2Vec [31] can be used to learn the contextual appearances of those flow record fields and

distributed into a single vector space based on IP2Vec custom context. IP2Vec was used to cluster

network hosts, and Ring et al. [41] found it to outperform the graph-based metric approach in [8].

That was an initial sign that techniques closely related to NLP could be used to learn interesting

behaviours.

Using Word2Vec directly, Cohen et al. [7] introduced DANTE, a specialised network security

analysis framework that used Word2Vec to extract sequences from collected darknet traffic (unsoli-

cited traffic to IP prefixes without any services). DANTE detected previously unreported attacks

because of a downstream cluster analysis, subsequently performed on an embedding generated by

Word2Vec. Following DANTE, DarkVec [12] outperforms IP2Vec and DANTE for darknet traffic

analysis in both supervised and unsupervised scenarios. DarkVec uses Word2Vec and forms a

corpus out of darknet traffic by placing IP addresses alongside each other in sentences based on

domain knowledge about services commonly found on computer networks, such as HTTP, SSH,

DNS, etc. DarkVec is the direct inspiration for our work, as we aim to characterise DDoS attacks at

scale using a similar approach.

The results obtained with Word2Vec in the networking domain led us to explore other NLP

techniques related to our work (§5). Doc2Vec [24] is an extension of Word2Vec that can learn

vector representations of documents. Older NLP techniques associated with information retrieval

and topic modelling are also still relevant today, such as Latent Semantic Analysis (LSA) [11]. We

elaborately discuss LSA as a part of DDoS2Vec itself (§4).

Very few approaches are similar to our proposed solution in the context of DDoS attacks —

especially amplification attacks. They are more generally involved with intrusion detection, but we

mention them here for completeness. Goodman et al. [13] used Word2Vec on packet payloads to

detect malware. Shima [50] used TF–IDF alone to analyse unusual port accesses based on packets

captured from a darknet. Lassez et al. [23] used LSA to detect intrusions by reducing the dimensions

of their dataset and its specific features. Wu et al. [57] used a probabilistic version of LSA (pLSA) to

compare aggregated flow profiles for maliciousness. These approaches generally differ from our

work in three major ways aside from the focus on general intrusion detection:

• Despite using techniques associated with the NLP field, they did not closely investigate the

relationship between natural language and computer network communication.

• Evaluation was held back to binary classification (detection) where MLwas involved, meaning

they did not evaluate characterisation abilities.

• The datasets used were extremely limited or incomparable in environment and scale, which

we discuss in greater detail (regarding the datasets) during the next section.

3 THE STATE OF DDOS DATASETS
To evaluate the characterisation performance of an approach, we need a dataset that includes a

large and diverse amount of attack traffic. Obtaining such datasets is challenging (as previously

explained by Wichtlhuber et al. [56]) due to the sensitive nature of the attack traffic. Besides,

only labelled datasets indicate which flows belong to an attack and to which attack type. Publicly
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Table 1. CIC-DDoS2019 top 5 IPv4 UDP ports for “DrDoS_DNS” (5,069,515 flows).

Most common source ports Most common ports pairs Most common destination ports

564 (13.311%) 53→ 7001 (0.001%) 63461 (0.004%)

634 (0.401%) 564→ 19862 (0.001%) 41966 (0.004%)

900 (0.195%) 626→ 15257 (0.001%) 11468 (0.004%)

530 (0.195%) 53→ 9 (0.001%) 18095 (0.004%)

512 (0.182%) 947→ 24314 (0.001%) 55369 (0.003%)

available labelled datasets exist, but we cannot use them (§3.1). Instead, we later describe a private

dataset (§3.2) collected at an IXP and outline the alternative we followed to label it (§3.3).

3.1 An Examination of a Publicly Available Labelled Dataset
Several publicly available datasets contain labelled DDoS attack traffic. Such datasets include CIC-

DDoS2019 [48], UNSW-NB15 [33], NF-UQ-NIDS [45], KDD Cup 1999 [19], and DARPA Intrusion

Detection Evaluation datasets (1998–2000) [9]. A typical intended use case for these datasets is

training ML models to detect DDoS attacks; however, their usefulness is primarily limited by the

dataset network environment and the size/diversity of the observations. As an example of such

limitations, we summarise CIC-DDoS2019 since it has attack-specific labels (e.g. with and without

reflection/amplification) and is one of the more recent datasets.

Unrealistic port usage. As flow records do not contain packet payloads, we can only infer

the type of traffic from the source and destination ports indicated in flow record fields. That is

backed by the fact that most popular protocols over UDP use well-known ports [53], such as

DNS servers listening on port 53. Knowing the protocol is mandatory for characterising DDoS

amplification attacks at a flow level, which means we expect to see, e.g. DNS responses sent by an

amplifier to use source port 53 generally. Successful research on amplification attacks at Internet

infrastructure has used that premise [44, 20, 35]. Table 1 shows the port make-up for the flows

labelled as “DrDoS_DNS” in CIC-DDoS2019, where source port 53 is not as common as we would

expect. That trait is shared by other protocols, e.g. NTP, where source port 123 is not typical for

flows labelled as “DrDoS_NTP”. These elements of the CIC-DDoS2019 dataset are specific to a

particular network environment and are not representative of real-world traffic.

Unknown attack configurations. The CIC-DDoS2019 dataset was generated by conducting

DDoS attacks in a controlled environment over two days, with controlled attack parameters. The

authors do not describe the attack configurations or the exact third-party software used to generate

the attacks. For example, DNS requests sent to the DNS amplifier(s) impact the packet and byte

sizes summarised by the “DrDoS_DNS” flows; hence, there are uncertainties about the experiments

conducted. As another example, we observed 5, 759 UDP flows labelled as “Syn” (TCP SYN flood) in

the CIC-DDoS2019 dataset, which indicates potential labelling errors or configuration mistakes.

The lack of information on the attack configurations used is a significant limitation. We cannot

know how representative this dataset is of real-world attacks outside of attack taxonomy.

Small private networks are not reflective of critical Internet infrastructure. Outside of
attack configurations, CIC-DDoS2019 was generated in a controlled environment with a small

private network. There are 21 unique IP addresses within the dataset’s flows when only considering

IPv4 UDP flows, seemingly with 15 of them as the source of benign traffic and 20 as the destination

of benign data. Only a few IP addresses are responsible for sending and receiving DDoS-related

traffic, which indicates a severe lack of attack distribution in the dataset. In total, roughly 74

thousand UDP flows are labelled benign, while over 63 million UDP flows are labelled as belonging

to an attack type. Since flow sampling is also absent, we can assuredly state that the dataset was

not collected under general Internet-level conditions.
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The suitability of such datasets for ground truth. Based on our brief examination of CIC-

DDoS2019, we find that it is insufficient as ground truth for characterising DDoS attacks at scale and

cannot be used to evaluate DDoS2Vec adequately without giving false confidence. Other datasets

have similar limitations:

• UNSW-NB15 [33] is a general intrusion detection dataset which only contains 527 UDP flows

labelled as “DoS” (attack type unknown) against 1.3 million benign UDP flows.

• NF-UQ-NIDS [45] is a large dataset created by merging several other datasets (such as UNSW-

NB15). Questionably, it mixes flows from different computer networks into a new artificial

one.

• KDD Cup 1999 [19] and the DARPA Intrusion Detection Evaluation datasets (1998–2000) [9]

are outdated since they predate many newer techniques of conducting DDoS attacks, e.g.

amplification.

Creating a realistic dataset is exceptionally challenging, as it requires collecting real-world DDoS

attacks observed in the wild or generating realistic attacks in an extensive yet controlled environ-

ment — all while carefully covering a wide range of attack types. In light of this discussion, we

describe the next best alternative.

3.2 Real-World IXP Flows
Our primary dataset of flow samples was from a medium-sized IXP with over 200 networks. The

flow records are in the unidirectional NetFlow format [6] and sampled at a ratio of 1:4096. Roughly

20 million IPv4 UDP flow samples were collected at the IXP daily, with over 7.2 billion IPv4 UDP

flow samples in total. Collection occurred without pause between mid-January and the end of

December for the year 2019 (visualised in Fig. 6 as a part of the appendix). Even though these flow

samples are a few years old, access to such a dataset is uncommon, and it allows us to assess the

value of DDoS2Vec without inheriting flaws from unrealistic alternatives.

Ethics statement. This dataset is private, as potential Personally Identifiable Information (PII) is

present in the dataset of flow samples due to IP addresses. We do not use IP addresses to recognise

or identify users associated with those IP addresses at any time; they are only used to act as unique

sources and destinations of other flow-level information. The dataset is private, so we cannot and

have not shared it publicly, and no PII is present or used anywhere within our work.

Unavoidable information loss. Due to the nature of flow samples, we may miss specific traffic

that we would ideally observe [16]. Furthermore, because of route asymmetry, the vantage point

(the IXP) may see traffic from 𝐼𝑃1 to 𝐼𝑃2 but miss traffic from 𝐼𝑃2 to 𝐼𝑃1, as the traffic of 𝐼𝑃2 could

take a different path on the Internet to reach 𝐼𝑃1 that does not cross the IXP. For example, we might

see a DNS server sending DNS responses to an IP address but miss the IP address sending potential

DNS requests to that DNS server. If so, we cannot determine from the IP level interactions alone

whether the IP address is a DNS client or a victim of an amplification attack. Because of the scale,

we cannot realistically rely on packet payloads.

The lack of ground truth. Evaluating the goodness of a DDoS attack characterisation approach

depends upon some form of ground-truth labels. Traffic at IXPs is seldom labelled with DDoS

attack information since it requires an elaborate process [56]. To account for this, previous DDoS

attack studies regarding IXP traffic have used basic heuristics without label information to detect

DDoS attacks [20] or have relied on auxiliary information from honeypots [35]. In essence, there

are three options to obtain the ground truth desired: (i) manually labelling the traffic; (ii) learning

characteristics from labelled datasets; or (iii) taking ground truth learned from other real-world

IXPs and similar Internet infrastructure. Because (i) is time-consuming at a massive scale and more

prone to human error/bias, and (ii) is unreliable (§3.1), we explore (iii).
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3.3 Obtaining Ground Truth
To help assess DDoS2Vec, we adopt IXP Scrubber [56] as a pragmatic approach to obtaining ground

truth. An important contribution of their work was a set of filtering rules made publicly available
1

that can be used to identify packet headers belonging to DDoS attacks in IXP traffic. We now briefly

elaborate on how these filtering rules were generated, how they can act as ground truth, and how

to understand their usefulness in our work’s context of characterisation as opposed to detection.

Wichtlhuber et al. [56] presented an ML approach to “scrubbing” DDoS attack traffic at IXPs. The

second step in the approach involves aggregating tagged flows into destination address records,

where they then classify the aggregated records as benign or malicious (binary classification) based

on the tagged flow(s) that contributed to the said record. We are interested in the first step of their

approach, where they construct a set of human-interpretable tagging rules that can be used for

filtering to address the lack of a suitably labelled dataset. They proposed a method to generate

extensive amounts of labelled data by taking advantage of blackholed traffic. To validate their

approach, they launched a small-scale controlled DDoS attack against their own network and

captured flow samples at an IXP.

IXP Scrubber’s filtering rules are human-interpretable descriptions of a flow likely to be black-

holed, i.e. linked to a DDoS attack. An example of a rule is given in §A.1. Note that characterisation

was not included in Wichtlhuber et al. [56]’s scope; thus, we aim to use the rules for evaluating

characterisation in this work. We consider each rule as defining a characteristic and/or summarising

less relevant characteristics (depending on the rule). We mark each flow in our IXP dataset as

matching the highest confidence rule (if one of the rules matched the flow).

Alternative rule sets. We acknowledge that other rule sets for acting as ground truth exist,

such as the Snort [43] Community Rules [51] and various rule sets for Suricata [52]. However,

using these rule sets for our work is challenging, mainly because: (i) they are not specific to

volumetric UDP-based DDoS attacks but are general Intrusion Detection System (IDS) rules;

(ii) numerous DDoS-related rules match on packet payloads (i.e. for the Snort Community Rules,

alert “PROTOCOL-DNS DNS query amplification attempt” looks into the DNS header), which we

do not have access to; and (iii) the IDS rules are less tailored to our IXP environment, as they were

not formulated under IXP circumstances. Proceeding with the IXP Scrubber filtering rules is the

most pragmatic approach.

4 DDOS2VEC
In essence, DDoS2Vec attempts to view network traffic as a group of natural language documents.

It uses Latent Semantic Analysis (LSA) to transform each document into a vector, allowing a

comparison of network traffic characteristics. We first explain our process for generating a textual
corpus from flow records (§4.1), which allows the usage of NLP techniques. Then, we show how we

used LSA to turn the documents into a single vector space (§4.2), allowing us to compare network

traffic characteristics.

4.1 Flow Corpus Generation
Since NLP techniques cannot directly use flow records, we must transform them into a format

similar to a natural language. DDoS2Vec achieves this by creating documents that are lists of words,
which can be seen as lists of flow records, as a DDoS2Vec word represents some information about

an individual flow record. Each document has a tag, which identifies what the document represents.

A corpus is a collection of tagged documents, and a vocabulary is the set of all words in a corpus.

Before we explain our process of creating a corpus, we initially discuss how one can design a flow

1
https://github.com/DE-CIX/ripe84-learning-acls
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corpus generation process and why it is a crucial step. There are three major design elements to

consider: (i) which underlying network semantics will words represent in the corpus vocabulary;

(ii) how to handle non-discrete numeric values; and (iii) what tags to use for the documents.

Defining the core vocabulary. A vocabulary for a flow corpus can represent any information

about flow records; however, as we are primarily concerned about DDoS attacks, we aim to represent

information that can help identify them. We can achieve that by defining a vocabulary representing

the key network semantics of DDoS attacks while considering the limited information in flow

records. The source and destination ports are an obvious choice of information to represent at a

fundamental level. A source port can indicate an amplification protocol used in an attack [44, 21,

20], while a destination port can indicate the specific port being targeted. Source ports are more

important than destination ones as there is some knowledge about which ports are commonly used

in amplification attacks, e.g. 53 for DNS [53].

Table 2. Example of domain knowledge of behaviours/services.

Name Source Ports Destination Ports Packet Size Ranges Packet Size Interval

"CLDAP DDoS" 389 [0, 65535] ∈ [0, 150] ,> 150 –

"CharGEN" 19 [0, 65535] > 0 –

"DNS DrDoS" 53, 853, 5353 [0, 65535] > 550 –

"DNS" 53, 853, 5353 [0, 65535] – 150

"Kerboros" 88 [0, 65535] – 32

"Memcached DDoS" 11211 [0, 65535] > 255 –

"NTP DDoS" 123 [0, 65535] > 99 –

"NTP" 123 [0, 65535] – –

"NetBIOS" 137, 138, 139 [0, 65535] – 100

"SNMP DDoS" 161 [0, 65535] > 150 –

"TFTP" 69 [0, 65535] – 300

"Generic (System-to-System)" [0, 1023] [0, 1023] – 100

"Generic (System-to-User)" [0, 1023] [1024, 49151] – 100

"Generic (System-to-Dynamic)" [0, 1023] [49152, 65535] – 100

"Generic (User-to-System)" [1024, 49151] [0, 1023] – 100

"Generic (User-to-User)" [1024, 49151] [1024, 49151] – 100

"Generic (User-to-Dynamic)" [1024, 49151] [49152, 65535] – 100

"Generic (Dynamic-to-System)" [49152, 65535] [0, 1023] – 100

"Generic (Dynamic-to-User)" [49152, 65535] [1024, 49151] – 100

"Generic (Dynamic-to-Dynamic)" [49152, 65535] [49152, 65535] – 100

Representing domain knowledge. We represent/encode generally understood behaviours

as words in a vocabulary. Gioacchini et al. [12] demonstrated that forming corpora based on

domain knowledge improves learning performance by helping expose relevant information in the

underlying dataset. Table 2 provides an example of domain knowledge, where each behaviour has

its own formation rules. We adopt Table 2 throughout the rest of this paper as the source of domain

knowledge for forming vocabularies to demonstrate how domain knowledge can be incorporated

into a corpus vocabulary
2
.

Discretisation. In many NLP techniques, numbers are simply treated as words (e.g. “1” and “2”

are as different as “1” and “300”). That works for ports but not for quantities, such as packet and

byte counts, which are better expressed as numeric intervals. DDoS2Vec transforms continuous

values into discrete ones. The intervals and thresholds are set such that the vocabulary size is

manageable, particularly regarding behaviours we consider generic or unknown. We illustrate that

in Table 2, which shows where each interval or threshold yields a word in the vocabulary (different

ranges indicate a variation of a behaviour). Like IXP Scrubber [56] (see §3.3), we adopt 100-byte

intervals for generic behaviours.

Document tags. The next step is to place words into the documents which form the corpus.

DDoS2Vec tags each document with a word (a document tag) that is unique, representing the

2
Note that we avoid any claims about the completeness/accuracy of the example behaviours in Table 2.
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Table 3. An example of three UDP flow records.

Timestamp Source IP Destination IP Source Port Destination Port Packet Count Byte Count

1648468800 192.168.1.40 192.168.1.50 11211 60000 2 2230

1648468902 192.168.1.50 192.168.1.60 49284 837 1 186

1648469003 192.168.1.1 192.168.1.70 53 58394 1 371

Table 4. Example corpus based on Table 2, Table 3, and Algorithm 1.

Document Tag Document Words

"192.168.1.50" "Memcached DDoS", "> 255", "11211->", "->60000", "Memcached DDoS", "> 255", "11211->", "->60000"

"192.168.1.60" "Generic (Dynamic-to-System)", "[100,199]", "49284->", "->837"

"192.168.1.70" "DNS", "[300,399]", "53->", "->58394"

document contents, and works as a title or identifier for the document itself. A unique tag will

identify the vector representation of each textual document. A major decision is how to tag

documents, as the document tag is the only (easy) way to identify a document after it is transformed

into a vector during later stages.

Tagging documents with IP addresses. So far, we have not discussed the application of IP

addresses to the corpora that DDoS2Vec generates using flow records as input data. IXPs may

observe many IP addresses, which can further increase during DDoS attacks, thus inflating the

vocabulary size. Including IP addresses in the vocabulary may also emphasise benign IP-to-IP

relationships [41, 7, 12] over other flow record characteristics. For example, two attacks may have

identical flow-level characteristics in all other manners; however, those attacks will not be as similar

if the IP addresses are merely different (despite identical attack patterns). Additionally, source IP

addresses can be spoofed, and the deployment of countermeasures is incomplete [29, 34, 28].

Destination IP addresses as document tags. In a DDoS attack that utilises reflection, the

destination IP addresses indicated in attack flow records effectively involve the reflector’s IP

address and the victim’s IP address. During post-reflection, the victim will receive notably different

attack traffic than other destination IP addresses, including the reflector’s IP address during pre-
reflection. The flows received by reflectors and victims will be noticeably different — especially

during amplification attacks due to amplification factors [44]. DDoS2Vec thus tags each document

with the IP address of the flow record’s destination, enabling the comparison of traffic directed to

different destination IP addresses, i.e. victims.

Corpus generation. We present the algorithm to transform flow records into a DDoS2Vec

corpus in Algorithm 1 (see comments in the pseudocode). The algorithm takes two inputs: (i) flow

records, sorted by the earliest timestamp; and (ii) behaviours, with the most specific ones first.

If there is a match between a flow record and a behaviour (L9), the behaviour’s name (L10) and

matching interval (L11) are used as words. The interval is calculated based on the average packet

count, as flow records lack per-packet byte count information. We repeat the word sequence by the

packet count (L15–L18) so word occurrence matches that of packet count. Note that we use the

notation “ . ” to indicate the concatenation of two tuples, i.e. the right-hand tuple is appended to

the left-hand tuple to create a new tuple. Algorithm 1 outputs the corpus𝐶 (effectively a list of lists

summarising flow record information). An example corpus is shown in Table 4 using the example

flow records in Table 3. Note that the words do not necessarily have to be human-readable and can

be given any arbitrary appearance, but they must be consistently formed from network semantics.

The corpus specified by 𝐶 is directly used and transformed in the following stages of DDoS2Vec.
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Algorithm 1 Flow corpus generation pseudocode.

Require: 𝐹 = (𝑅1, . . . , 𝑅𝑛 ) ⊲ 𝐹 denotes a tuple of flow records.

Require: 𝐾 = (𝐵1, . . . , 𝐵𝑛 ) ⊲ 𝐾 denotes a tuple of behaviours based on domain knowledge.

1: 𝑇 ← ∅ ⊲ 𝑇 denotes a set of tags (special words that identify documents).

2: 𝐶 ← ∅ ⊲𝐶 denotes a multiset (a set allowing duplicate elements) of documents (tuples of words).

3: 𝑚 : 𝑇 → 𝐶 ⊲𝑚 denotes a function that maps tags to documents for the purpose of identification.

4: for all 𝑅 ∈ 𝐹 do ⊲ The flow records are sorted by timestamp.

5: 𝑡 ←Stringify(𝑅𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ) ⊲ 𝑡 denotes a document tag.

6: 𝑠 ←Stringify(𝑅𝑠𝑜𝑢𝑟𝑐𝑒 𝑝𝑜𝑟𝑡 ) + “->” ⊲ 𝑠 denotes a word representing a source port.

7: 𝑑 ← “->” + Stringify(𝑅𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡 ) ⊲ 𝑑 denotes a word representing a destination port.

8: for all 𝐵 ∈ 𝐾 do ⊲ The most specific behaviours are checked first.

9: if BehaviourMatch(𝑅, 𝐵) then ⊲ If the flow record matches the behaviour’s criteria...

10: 𝑛 ←BehaviourName(𝐵) ⊲ Use the behaviour’s name as a word.

11: 𝑖 ←BehaviourInterval(𝐵,
𝑅𝑏𝑦𝑡𝑒 𝑐𝑜𝑢𝑛𝑡

𝑅𝑝𝑎𝑐𝑘𝑒𝑡 𝑐𝑜𝑢𝑛𝑡
) ⊲ The average packet size is used for the interval.

12: break ⊲ The most specific behaviour matched, so break the loop.

13: ⊲ Assert that 𝑛 and 𝑖 are defined, as a behaviour must have matched — however generic it may be. ⊳

14: 𝐷 ← ∅ ⊲ 𝐷 denotes an empty tuple. It represents the document for the tag 𝑡 .

15: 𝑐 ← 0 ⊲ We repeat words as necessary to add extra weight based on the packet count.

16: while 𝑐 < 𝑅𝑝𝑎𝑐𝑘𝑒𝑡 𝑐𝑜𝑢𝑛𝑡 do ⊲ The packet count will always be above zero.

17: 𝐷 ← 𝐷 . (𝑛, 𝑖, 𝑠, 𝑑 ) ⊲ Concatenate the tuples (extend the document 𝐷).

18: 𝑐 ← 𝑐 + 1 ⊲ Increment the counter.

19: if 𝑡 ∈ 𝑇 then ⊲ If this tag has been seen before...

20: 𝑂 ←𝑚 (𝑡 ) ⊲ Retrieve the older document with its older words.

21: 𝐷 ← 𝑂 . 𝐷 ⊲ Effectively prepend the older document to the newly-formed document.

22: 𝐶 ← 𝐶 \ {𝑂 } ⊲ Now remove the older document from the corpus, as we will replace it next.

23: else ⊲ Otherwise...

24: 𝑇 ← 𝑇 ∪ {𝑡 } ⊲ Add the new tag to the set of tags.

25: 𝐶 ← 𝐶 ∪ {𝐷 } ⊲ Add the new or updated document (words representing what 𝑡 received) to the corpus.

26: 𝑚 (𝑡 ) = 𝐷 ⊲ 𝑡 of𝑇 is now mapped to 𝐷 of𝐶 .

27: output𝑇,𝐶,𝑚 ⊲𝐶 is the corpus required for DDoS2Vec’s next stage (LSA).

4.2 Latent Semantic Analysis (LSA)
LSA is a classic NLP technique for comparing the similarity of documents based on their word

frequencies [11]. It is a loosely defined technique generally consisting of two significant steps: Term

Frequency – Inverse Document Frequency (TF–IDF) and a truncated version of Singular Value

Decomposition (SVD).

TF–IDF. In order to transform a document into a vector representation, we use TF–IDF to create

a document-term matrix (a matrix of word frequencies in each document). TF–IDF is a popular

NLP and information retrieval technique [42, 14, 61]. There are many variations of TF–IDF, so

for DDoS2Vec, we use and explain one implemented in the popular scikit-learn library [38]. As

indicated by its name, TF–IDF combines Term Frequency (TF) and Inverse Document Frequency

(IDF). The goal of TF–IDF is to weigh how important a word is to a document both locally within a

document and globally across the corpus. For brevity here, we explain the exact equation we use in

the appendix (§A.2). Since TF–IDF produces a very wide matrix, LSA involves a dimensionality

reduction technique to avoid the well-known curse of dimensionality.

Truncated SVD. We use the truncated SVD of the document-term matrix as the primary

output for DDoS2Vec. SVD, which is a well-known linear algebra matrix factorisation technique,

essentially decomposes a matrix into three matrices. The three matrices form the original matrix

when multiplied together, and a truncated version allows for a low-rank approximation of the

original matrix. Each row in that matrix for a DDoS2Vec corpus represents a potential DDoS attack.

We provide a deeper overview of SVD in the appendix (§A.3).
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Alternative techniques. Together, TF–IDF and truncated SVD represent a typical implementa-

tion of LSA; however, there are numerous alternatives that we do not explore in this paper. Instead

of TF–IDF, we could use different document vectorisation techniques, i.e. entropy as the global

weighting scheme instead of IDF. Instead of truncated SVD, other options for dimensionality reduc-

tion include Non-negative Matrix Factorisation (NMF) [25], sparse random projection [27], and

Latent Dirichlet Allocation (LDA) [11].

Explainability. DDoS2Vec works because it can learn the semantics of network behaviour from

the training corpus via word occurrences and then use that knowledge to compare the similarity

of new documents (new flow records belonging to a potential attack). As DDoS2Vec is relatively

simple, it is explainable [18] compared to other more complex machine learning techniques, such

as deep learning black-box models. That is because DDoS2Vec requires very few steps compared

to more complex techniques, and the steps themselves are not sophisticated. DDoS2Vec is also

relatively interpretable because we can inspect the words in the corpus, and the resulting vectors

by the truncated SVD step via a standard calculation (§A.3) are also created without randomness.

Attacks against DDoS2Vec. An attacker could attempt to poison the corpus by purposefully

changing their attack’s characteristics from other known and labelled DDoS attack characteristics.

This would require noticeable effort on the attacker’s part, as they would need to change the

characteristics of their traffic’s flow records towards victims to prevent the victim’s document

vector from being similar to known DDoS attack victims. We do not study this further, but note

that it is a possible avenue for an attack against DDoS2Vec’s characterisation abilities.

5 COMPARING DDOS CHARACTERISATION APPROACHES
To provide an overview of DDoS2Vec’s ability to characterise potential attacks, we compare it against

other approaches for characterising DDoS attacks at a flow level. The baseline NLP approaches are

Doc2Vec [24] and Word2Vec [31], which use the same corpus as DDoS2Vec. We create a baseline

non-NLP approach for comparison, which we call Counter. For brevity here, we elaborate on the

approaches in §A.5 instead. We first explain the evaluation setup (§5.1), the metrics used (§5.2), and

finally, present the results (§5.3).

5.1 Setup
Preparing the dataset. We apply the rules indicated in §3.3 to all flow samples in the dataset. We

then take all flow samples from November 2019 (a relatively busy month of traffic) to train and test

the solutions. Each rule has its identifier (§A.1) act as a label. As the dataset is highly imbalanced

with a vastly different number of occurrences per rule (support), we reduce the occurrence of

the null rule (no match) to meet the highest occurring rule’s support (this does not apply to the

Word2Vec run, which we explain later). We also remove all rules with fewer than 10 occurrences.

While that does not balance the dataset, it prevents the null rule from dominating the others. Fig. 1

shows the class distribution after the trimming.

Training and testing. Each solution is trained and tested on the same dataset split into a

training set and a test set via 5-fold cross-validation with shuffling and iterative stratification [46].

Note that the split is done after transforming flow records but only before an approach’s training

stage to avoid data leakage; however, that does not apply to Word2Vec, where we generate one

embedding over the whole dataset instead of an embedding for all five training sets individually.

We do this for Word2Vec to avoid Out-Of-Vocabulary (OOV) issues, as the vocabulary is comprised

of IP addresses that are potential victims (unlike a vocabulary for the document approaches). We

acknowledge this as a case of “data snooping” [3], as the train-test split is done after embedding

generation, causing a data leakage. Regardless, this still allows us to gauge the distribution of the

vectors in the embedding space and is more similar to DarkVec’s evaluation [12] since the classifier
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Fig. 1. Label distribution of November 2019 (null match rule trimmed).

is still only trained post-split. Additionally, no trimming of the majority class label is performed,

meaning we generate a Word2Vec embedding for the whole unprocessed month.

DDoS2Vec hyperparameters. DDoS2Vec is based on LSA, meaning that it inherits its hy-

perparameters. We kept vector length at 100 (similar to the other approaches’ hyperparameters).

We generated uni-grams, bi-grams, and tri-grams as new words within each document for the

DDoS2Vec corpus used in this section. We did not trim any words from documents based on

minimum or maximum word counts across the entire corpus for the approach comparisons. Do-

main knowledge was included in the flow corpus generation process (all non-generic behaviours

indicated in Table 2 during §4.1). This example configuration is unassuming, and we perform

hyperparameter tuning after the approach comparisons.

Multi-label classification.We used a 𝑘-NN classifier with 𝑘 = 10 and distance weighting for

all solutions. While other classifiers commonly provide stronger classification performance, e.g.

XGBoost [5, 56], we adopted 𝑘-NN due to its ubiquity. The classifier aims to predict the set of IXP

Scrubber rules (in §3.3) that apply to each document. We did not give the classifier any information

on how much a rule weighs for each document; instead, it predicts a binary value for each rule

(indicating its presence or contribution to a document). The null match (class label “—”) can also be

predicted, which corresponds to a flow record that did not match any of the IXP Scrubber filtering

rules, yet it still contributed to a document.

Systemand version information.All evaluations in this paper were conducted on a GNU/Linux
system with an AMD EPYC 7702 processor with 64 cores (128 total threads) and 1 TB of memory.

The system was running Ubuntu 18.04.1 with a 5.4.0-144-generic kernel. Python 3.10.9 with the

following libraries was used: NumPy 1.24.3, SciPy 1.8.1, scikit-learn 1.2.1, iterative-stratification

0.1.7, and Gensim 4.3.0. The seed used for all random number generation was 463. We publicly

release all code
3
used in this paper; however, we cannot release our dataset or the accompanying

corpora due to their highly sensitive nature. Regardless, the open-source research artefacts we

provide (as a collection of Jupyter notebooks) can be used to customise, extend, or reproduce our

exact steps for all experiments on a different set of flow records.

3
https://github.com/RavSS/DDoS2Vec
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5.2 Metrics
Wenow explain our general criteria for selecting the best approach. This is amulti-label classification

problem, and its results are quantified using classic ML metrics (§A.4) for which higher values are

desirable. We use both macro-averaged and micro-averaged metrics. The macro-averaged metrics

do not consider the imbalance of the rules, while the micro-averaged metrics do. The imbalance

is natural, as some rules (characteristics) are simply more common than others. To understand

the dataset imbalance’s impact on the metrics and the least acceptable values for each metric, we

include a “dummy” approach that only predicted the majority null rule (“—”) for every potential

attack. The “dummy” approach effectively tells us the worst-case scenario for each metric, as it

always provides a meaningless characterisation of benevolence regardless of data.

Selection criteria. To summarise the importance of both rare and common characteristic

prediction, we take the macro and micro values for each averaged metric and again average

(arithmetic mean) them to obtain an “intermediate” value. We evaluate the goodness of an approach

by its intermediate F1 score, which considers precision and recall. A high precision means the

approach can correctly recognise the characteristics of attacks, while a high recall indicates that

the approach can consistently recognise said characteristics. In essence, the approach that has the

highest value for all metrics is the best and can provide the clearest DDoS attack characterisation.

5.3 Results
We now show how well each approach can characterise a potential DDoS attack based on the

predicted IXP Scrubber rules that matched its related flow samples. First, we present the overall

classification performance, followed by the classification performance for individual classes (limited

to the top 15 filtering rules). Afterwards, we experiment with DDoS2Vec hyperparameters (including

a small ablation study) by tweaking them to obtain better performance values.

Characterisation considering all rules. Table 5 shows the characterisation ability for each

of the approaches, as expressed by different classification metrics (we highlight in blue the best

values to aid visualisation). First, the worst intermediate F1 score (excluding “dummy”) was from

Word2Vec (0.27), even considering it observes all data prior to the train-test split and therefore has

the advantage of not needing to infer vectors post-training. We hypothesise that most words in

the Word2Vec corpus were not learned adequately due to the non-ideal default negative sampling

hyperparameters, which most likely suit natural language corpora better than our domain-specific

ones. Doc2Vec and Counter come close to each other, achieving the same intermediate precision

value (0.57), but the latter has a higher recall. We expected Counter to outperform Doc2Vec because

most of the IXP scrubber rules are associated with prevalent abused protocols in DDoS, such as DNS

and NTP, and can be covered reasonably well with domain knowledge alone. However, Doc2Vec

highlighted the benefit of NLP being a “dynamic” approach, not purely limited by domain knowledge.

Finally, DDoS2Vec achieved a noticeable gap over the other approaches with an intermediate F1

score of 0.64, indicating that it can learn attack characteristics better than the other approaches.

Both the macro-averaged and intermediate precision values for DDoS2Vec are noticeably higher

than the other approaches, meaning DDoS2Vec avoids false and/or misleading characterisations of

potential attacks much better than the other approaches. In essence, DDoS2Vec combines the best

of both Doc2Vec and Counter, even with an untuned selection of hyperparameters.

Computational cost. Table 5 also shows the time taken for training and testing during cross-

validation
4
on the preprocessed month of flow samples that summarise roughly 752 million packets.

Note that the time for corpus generation or count transformation was done before cross-validation;

hence, the time taken for those steps is not reflected in Table 5, but nonetheless they are negligible

4
Includes fitting, transforming, and predicting — along with 𝑘-NN itself.
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Table 5. Characterisation results; considering all rules.

Metric Dummy Doc2Vec Word2Vec Counter DDoS2Vec

Macro-Averaged Precision 0.01 0.32 0.01 0.22 0.47
Macro-Averaged Recall 0.01 0.12 0.02 0.12 0.30

Macro-Averaged F1 Score 0.01 0.15 0.01 0.14 0.34

Micro-Averaged Precision 0.73 0.82 0.73 0.91 0.96
Micro-Averaged Recall 0.42 0.72 0.78 0.88 0.92

Micro-Averaged F1 Score 0.53 0.76 0.75 0.90 0.94

Intermediate Precision Value 0.37 0.57 0.37 0.57 0.71
Intermediate Recall Value 0.21 0.42 0.40 0.50 0.61

Intermediate F1 Score Value 0.27 0.46 0.38 0.52 0.64

Exact Match Ratio 0.15 0.46 0.39 0.77 0.84

Mean Training Time per Fold (H:MM:SS) 0:00:10 7:12:15 0:00:40 0:00:35 4:33:19

Mean Testing Time per Fold (H:MM:SS) 0:01:18 3:04:40 0:11:01 0:08:08 0:29:15

compared to the later steps. The slowest approach (Doc2Vec) took roughly two days to train for five

embeddings. Word2Vec took a few hours before cross-validation for its single embedding (explained

in §5.1). Counter was by far the fastest, taking only a few minutes, as it does not require a training

state. DDoS2Vec is substantially slower than Counter during its training over five individual corpora,

but the gap shortens considerably during testing (inferring new attacks), and we further shorten it

overall during hyperparameter tuning. Training is not performed often, and training and testing

can be adjusted for different traffic periods or in a more selective manner than considering every

potential victim (destination IP address) in a month. The vocabulary size (at its upper limit here)

and corpus size are the main factors affecting the computational cost of DDoS2Vec, which we

discuss later in this paper. Despite the computational cost, DDoS2Vec doubles the classification

performance of Counter on recognising subtle attack characteristics in traffic at scale in what is a

non-urgent task (compared to live attack detection).

Focused analysis. Since not all rules are equally prominent in our dataset due to severe dataset

imbalance, we zoom in on the 15 most prevalent rules. Table 6 shows to which extent each approach

can classify attack characteristics through precision, recall, and F1 score metrics. Comparing row by

row, we can observe that DDoS2Vec generally outperforms the other solutions (to aid visualisation,

we highlight in blue the best F1 score in each row, and any values ≤ 0.60 are in red). The low

recall performance of Doc2Vec indicates it falls short in consistently recognising DDoS attack

characteristics, so it is inferior to Counter within this aspect. Counter performs its absolute best

on the most prevalent rules due to our example of domain knowledge in §4.1 (that we based

Counter upon) covering many of them. Despite that, DDoS2Vec still outperforms Counter, meaning

DDoS2Vec can learn common characteristics better than it too, not just rarer characteristics.

Elaborating on the performance of DDoS2Vec. DDoS2Vec (via LSA) is essentially a dimen-

sionality reduction technique that condenses documents (which describe potential DDoS attacks)

into an embedding (a vector space). DDoS2Vec outperforms the other NLP approaches tested on the

same corpus because DDoS2Vec is more sensitive to individual behaviour words (unlike Doc2Vec).

On the other hand, the sentence approach of Word2Vec means that the destination IP address

words (the only words in the special Word2Vec corpus) are too heavily weighted on proximity.

The Counter baseline approach does not require training, but that also means it cannot emphasise

unique characteristics of DDoS attacks that are not covered by domain knowledge (which may be

flawed, as we cover later on). Different corpora for Doc2Vec and Word2Vec — without data leakage

or built-in knowledge of the IXP Scrubber filtering rules — may increase their performance, but we

do not expect them to outperform LSA as the core NLP technique for DDoS2Vec.
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Table 6. Characterisation results; top 15 most prevalent rules only.

Filtering Rule Doc2Vec Word2Vec Counter DDoS2Vec
Label Support Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

— 8303095 0.81 0.78 0.79 0.73 0.93 0.82 0.98 0.94 0.96 0.99 0.94 0.96
66cc3d22 8302945 0.83 0.82 0.83 0.73 0.93 0.82 0.93 0.98 0.95 0.98 0.97 0.97
a4027970 1415070 0.79 0.26 0.39 0.12 0.00 0.00 0.65 0.39 0.48 0.89 0.71 0.79
be412651 336845 0.80 0.52 0.63 0.00 0.00 0.00 0.92 0.83 0.87 0.97 0.90 0.93
2be8ca2f 260205 0.90 0.55 0.68 0.00 0.00 0.00 0.87 0.75 0.81 0.88 0.84 0.86
cdcedb50 178000 0.91 0.63 0.74 0.00 0.00 0.00 0.85 0.75 0.80 0.85 0.81 0.83
cab055dc 171195 0.37 0.05 0.09 0.00 0.00 0.00 0.83 0.88 0.86 0.75 0.78 0.76
8ea23b49 142795 0.68 0.19 0.30 0.00 0.00 0.00 0.72 0.46 0.56 0.82 0.79 0.80
6333a63c 118740 0.62 0.16 0.25 0.00 0.00 0.00 0.68 0.27 0.38 0.72 0.66 0.69
6512a9da 100950 0.80 0.60 0.68 0.00 0.00 0.00 0.75 0.67 0.71 0.75 0.74 0.75
204bef79 91530 0.84 0.30 0.43 0.00 0.00 0.00 0.32 0.40 0.35 0.92 0.96 0.94
1a84f2f8 86065 0.64 0.12 0.21 0.00 0.00 0.00 0.70 0.22 0.34 0.88 0.68 0.77
c8baa04b 59560 0.58 0.13 0.22 0.00 0.00 0.00 0.58 0.18 0.28 0.71 0.57 0.63
2e4c3e69 48725 0.49 0.00 0.01 0.00 0.00 0.00 0.93 0.93 0.93 0.81 0.79 0.80
9021485b 39525 0.60 0.07 0.13 0.00 0.00 0.00 0.57 0.15 0.24 0.81 0.56 0.66

Table 7. DDoS2Vec minimum word frequency and vector length impact on intermediate F1 score values and
mean evaluation time per fold (H:MM).

MinimumWord Frequency
Vector Length

100 200 300

10 0.658 (4:06) 0.662 (6:15) 0.662 (7:55)

1000 0.645 (2:26) 0.652 (2:50) 0.650 (2:32)

10000 0.594 (2:35) 0.596 (2:36) 0.598 (2:29)

Table 8. DDoS2Vec 𝑛-gram generation’s performance impact.

𝑛-grams Generated Intermediate F1 Score Value Mean Evaluation Time per Fold (H:MM)

Uni-grams 0.668 0:32

Uni-grams, Bi-grams 0.656 1:24

Uni-grams, Bi-grams, Tri-grams (Table 5) 0.635 5:03
Bi-grams 0.632 1:07

Bi-grams, Tri-grams 0.617 2:38

Tri-grams 0.579 1:48

Minimum word frequency and vector length hyperparameter sensitivity. For DDoS2Vec,
we performed a basic grid search over the minimum word frequency and vector length hyperpara-

meters (5-fold cross-validation included with mean averages taken across all folds). Table 7 shows

the intermediate F1 scores for each combination of hyperparameters. We observe that requiring a

higher minimum frequency for all unique words across the corpus has a more significant penalty

on the intermediate F1 score than the vector length. Removing less common words from the vocab-

ulary decreases the model’s ability to infer potential DDoS attacks correctly and understand rarer

characteristics. Also seen in Table 7 is the time impact (in parentheses). The main advantage of

removing less common words and decreasing the vector length is the (often considerable) reduction

in time taken for both training and testing (evaluation). For higher minimum word frequencies, we

see a significant reduction in time taken for computing the truncated SVD of the document-term

matrix outputted during TF–IDF vectorisation — the latter of which is not optimised for speed in

the generic single-threaded scikit-learn implementation.

𝑛-gram sensitivity.We further experimented with DDoS2Vec’s hyperparameters to understand

the impact of word order and 𝑛-gram generation. Table 8 shows the performance impact of gener-

ating 𝑛-grams (up to tri-grams) from the corpus. Generating uni-grams alone provides the best

performance, but the performance gap is insignificant until only tri-grams remain. The key outcome

is that word order is not as important as the words themselves, as the 𝑛-grams where 𝑛 > 1 appear
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Table 9. DDoS2Vec domain knowledge’s performance impact and best hyperparameter tuning.

Metric Domain Knowledge (Table 5) No Domain Knowledge Tuned

Macro-Averaged Precision 0.47 0.50 0.60
Macro-Averaged Recall 0.30 0.33 0.38

Macro-Averaged F1 Score 0.34 0.38 0.44

Micro-Averaged Precision 0.96 0.96 0.96
Micro-Averaged Recall 0.92 0.92 0.94

Micro-Averaged F1 Score 0.94 0.94 0.95

Intermediate Precision Value 0.71 0.73 0.78
Intermediate Recall Value 0.61 0.63 0.66

Intermediate F1 Score Value 0.64 0.66 0.70

Exact Match Ratio 0.84 0.84 0.87

Mean Training Time per Fold (H:MM:SS) 4:33:19 2:26:44 0:10:25

Mean Testing Time per Fold (H:MM:SS) 0:29:15 0:17:40 0:06:01

to reduce the significance of the words (uni-grams); thus, we can save a substantial amount of time

by avoiding 𝑛-gram generation. This is likely to be the case because the IXP Scrubber filtering

rules identify individual flow characteristics, not flow sequence characteristics; thus, this particular

outcome may potentially be different for other labelled datasets.

Non-domain-knowledge corpus. In Table 9, we experimented with a corpus that did not

include domain knowledge (generic behaviours only), with all other hyperparameters remaining the

same as described in §5.1. We observe a performance gap in the non-domain-knowledge corpus’s

favour. That indicates flaws in our example domain knowledge (which the Counter baseline wholly

relied upon), meaning there is missing knowledge and/or the behaviours are too broad, so more

subtle characteristics of DDoS attacks are obscured. To highlight DDoS2Vec’s potential, we also

provide an extra run for our best-case DDoS2Vec configuration based on the results in the previous

experiments, which we indicate in Table 9 as “Tuned”. It involves no domain knowledge, uni-grams

only, no minimum word frequency, and a vector length of 200. We achieved a further performance

increase on the rarer rules, but most importantly, there is a substantial computational cost decrease.

Despite the hyperparameter tuning, we proceed with the initial hyperparameters selected in §5.1

for the longitudinal analysis in the next section to avoid a best-case evaluation only.

6 LONGITUDINAL ANALYSIS
This section analyses the transferability of a month of IXP traffic (2019-06-01 — 2019-07-01) over to

the rest of 2019 at that IXP. Unlike the previous section, the IXP flows were not filtered, balanced,

trimmed, etc., in anymanner except that we again only consider IPv4 UDP flows.We first investigate

the corpora generated by DDoS2Vec (§6.1), then show how a model trained on that month of IXP

traffic performs on other months of IXP traffic (§6.2).

6.1 Investigating DDoS2Vec-Generated Corpora
DDoS2Vec, a domain-specific NLP technique to characterise potential DDoS attacks, generates

corpora as the result of its first stage (§4.1). The later stages work on the generated corpora, and

the quality of a corpus is essential for the quality of its corresponding DDoS2Vec model; therefore,

we more closely investigate the link between NLP and computer network communication. For all

corpora generated by DDoS2Vec for all months, we focus on two aspects: (i) word frequencies in

the vocabularies and (ii) vocabulary overlap of corpora between months.

Word frequency distributions. We consider two cases: the training corpus and all testing

corpora combined (counts for each word are mean averaged during the combination). There are

two comparisons to be made; first, we compare DDoS2Vec corpora with natural languages. In

many natural languages (e.g. English), the word frequency distribution for a sizeable corpus closely
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Fig. 2. Log-log plot of word frequencies against word ranks in corpus vocabularies.

follows a Zipf distribution [39]. We investigated if this also applied to the corpora generated by

DDoS2Vec
5
. Fig. 2 shows (in log scale for both axes) the frequency or count of words against their

popularity (rank) from the most popular to the least popular word. The word frequency distribution

of the corpora does not closely fit a Zipf distribution: the vast majority of less popular words (whose

rank is ≥ 10
3
) occur much more often than the less popular words of natural languages. The second

(more telling) comparison is between the training corpus and testing corpora. We observe that

their distributions are almost identical, even considering that the traffic for the test corpora was

observed in completely different months, which is a promising sign of transferability.

Out-Of-Vocabulary (OOV) words. A corpus generated by DDoS2Vec has a vocabulary that is

comprised of all the words that appear in the corpus’s documents. As such, the make-up of the

vocabulary changes based on the flow records considered. OOVwords are those found in documents

to be processed but absent from the training vocabulary, i.e. “new” words. They may limit the

ability of a DDoS2Vec model to characterise a potential DDoS attack, as the words describing

flow-level behaviour were not present in documents used for training the DDoS2Vec model. Hence,

we investigated the prevalence of OOV words in documents in our IXP dataset. Fortunately, when

DDos2Vec is trained on a month of IXP traffic, the presence of OOV words in other months is

negligible. The highest OOV word situation happened for 2019-05, where just 6 unique words

with 132 occurrences are OOV from a vocabulary of 131141 unique words with over 2.4 billion

occurrences in that month. The vocabulary size for all twelve months individually ranges from

131134 to 131141 unique words, which is highly stable. For example, the Jaccard similarity between

the vocabulary sets of any two months is greater than 0.99. Like the word frequency distribution

similarities, the lack of OOV issues increases transferability, which we evaluate next.

6.2 Classification Performance Drift
The results of §5 showed that DDoS2Vec could learn attack characteristics within a month of IXP

traffic itself. We now investigate whether a DDoS2Vec model trained in a month (2019-06) can be

transferred to other months with reasonable classification performance. We evaluated backward

from 2019-05 to 2019-01 and forward from 2019-07 to 2019-12. As with §5, we use an identical

multi-label classification setup, except we do not remove/trim any documents, and we consider all

IXP Scrubber filtering rules (§3.3) regardless of support levels. The hyperparameter configuration

5
Not including the addition of 𝑛-gram words where 𝑛 > 1 for the later TF–IDF stage of DDoS2Vec.
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Fig. 3. Classification performance over 2019 of a DDoS2Vec embedding trained on 2019-06-01 — 2019-07-01.

Fig. 4. Rule predictions over time in two directions. Fig. 5. Time taken for months based on corpus size.

remains the same as described in §5.1 as well. It is unlikely that all attack characteristics would be

present in a single month for learning purposes, but we expect to find some characteristics shared

among months.

Classification performance drift. Fig. 3 shows an overview of the classification performance

over 2019. Three metrics are represented: the exact match ratio, macro-averaged F1 scores of

reasonably supported rules, and macro-averaged precision of top-15 rules. As expected, there

is a slight decay in classification performance for all three metrics as we move away from the

training month. The exact match ratio (orange curve) is consistently high (over 0.85) and decays

steadily, but it does not account for class imbalance. The average precision of the top 15 rules (cyan

curve) falls more acutely to around 0.65, but it also remains relatively steady. More important, we

look towards the macro-averaged F1 score where we only consider rules with at least 1% of the

majority rule’s support within a month. That allows us to focus on the rules that dominate the

traffic in a month, which is more helpful to understand than scarce characteristics — especially

as zero trimming of extremely rare labels (rules) was done. We can transfer a DDoS2Vec model

to other months for attack characterisation, but the classification performance depends on the

characteristics learnt during training. A wider variety of attack characteristics in the training set is

preferable for transferability.
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Comparing past vs. future predictions. Still based on Fig. 3, we observe a small difference

between the backward and forward results, meaning traffic characteristics are dominant over time.

Fig. 4 shows the correct (true positive and true negative) and incorrect (false positive and false

negative) rule predictions over time. The training month (June) was not included. Note that the

fifth data point for the past (correct and incorrect) predictions dropped overall compared to the

previous months because January was truncated (seen in Fig. 5 or §3.2). We see extremely few

incorrect classifications compared to correct ones, and both correct and incorrect predictions for

their direction have a similar trend, indicating the difficulty of predicting obscure characteristics (a

strength of DDoS2Vec over other approaches). A key takeaway is that DDoS2Vec is not distinctly

biased toward the past or future, indicating a certain transferability level.

Time taken for evaluation. As we evaluated DDoS2Vec on a year of 7.2 billion flow records

(§3.2), there is a concern that the time taken to obtain characteristics of potential attacks may be

prohibitive. Fig. 5 shows the time taken by DDoS2Vec to evaluate all months of traffic in our full 2019

IXP dataset. The time is relatively consistent based on how many potential attacks (towards victims)

DDoS2Vec is characterising, roughly taking a few hours for an entire month — considering that it is

without any balancing, trimming, etc. The time performance can be further improved by discarding

obscure words in the corpus vocabularies, which we showed in §5 via DDoS2Vec hyperparameter

tuning for one month. In essence, the time taken depends more heavily on the number of potential

attacks (corpus size) and the number of unique flow-level behaviour descriptions (corresponding

vocabulary size) rather than the strict number of flow records alone due to how DDoS2Vec uses

LSA (§4.2) and how LSA mathematically works (§A.2, §A.3).

7 CONCLUSIONS
Throughout this work, we have shown that NLP techniques can aid in characterising DDoS attacks

within real-world Internet traffic. Initially, we demonstrated that synthetic datasets were unsuitable

for this task and instead based all our work on flow samples collected from an IXP. Our approach —

DDoS2Vec — is a domain-specific application of LSA that outperforms other NLP baselines and a

typical attack port counting approach for learning characteristics of DDoS attacks in a multi-label

classification scenario. Even if one month does not typically contain all variations of DDoS attacks,

we have shown that a trained DDoS2Vec model can still be successfully applied to other months of

IXP traffic. Additionally, we investigated the link between natural language and computer network

communication, particularly word frequencies and occurrences when flow records are represented

inside textual documents as multiple words.

Future work. This paper is a first step toward considering the application of NLP techniques

on DDoS attack characterisation, which we have only shown a glimpse of in this paper yet still

achieved notable results. We have avoided using more computationally expensive deep learning

architectures, e.g. transformer-based models [55], because no pre-trained models are available for

us in this highly domain-specific task. We have not considered online training experiments for

DDoS2Vec, which are possible. Alternative methods for formulating the flow corpus generation

should be investigated (§4.1) that allow for different forms of analysis, e.g. representing Autonomous

Systems or IP prefixes in document tags instead of only IP addresses.
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A APPENDIX

Fig. 6. IXP flow samples of 2019 per week.

A.1 IXP Scrubber Filtering Rule Example

" 2 0 d10ae9 " : {

" p r o t o c o l " : 1 7 ,

" p o r t _ s r c " : 5 3 ,

" p o r t _ d s t " : 2 701 ,

" p a c k e t _ s i z e " : " ( 1 4 0 0 , 1 5 0 0 ] " ,

" c on f i d en c e " : 1 . 0 ,

" a n t e c ed en t popu l a t i on " : 410966

}

Listing 1. IXP Scrubber Filtering Rules Excerpt

A filtering rule explained. Listing 1 shows one of the 327 rules in its original JSON format.

Each rule has a unique identifier, a protocol number, source and destination port matches, a packet

size range, a confidence value, and an antecedent population. In this work, we are only interested

in UDP (protocol number 17) flows. Ports can be matched on a specific port number, a set of ports

to not match, or a match on any port. The packet size interval is 100 and goes from (0, 100] up to

(1400, 1500], with the latter being the highest packet size interval (in addition to rules which match

any packet size). The confidence value is a number between 0.0 and 1.0, indicating how likely a

flow matching the rule is blackholed. Wichtlhuber et al. [56] only publicly make available the rules

with confidence values at and above 0.9. The antecedent population is the number of flows used to

mine the rule itself.
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A.2 Term Frequency – Inverse Document Frequency (TF–IDF)

Given a corpus𝐶 . . .

𝑇𝐹 (𝑡, 𝐷 ) = Number of times 𝑡 occurs in 𝐷

|𝐷 | (1)

𝑆𝑢𝑏𝑙𝑖𝑛𝑒𝑎𝑟𝑇𝐹 (𝑡, 𝐷 ) =
{
log(𝑇𝐹 (𝑡, 𝐷 ) ) + 1 if𝑇𝐹 (𝑡, 𝐷 ) > 0

0 otherwise

(2)

𝐷𝐹 (𝑡 ) = Number of documents in𝐶 containing 𝑡 (3)

𝐼𝐷𝐹 (𝑡 ) = log

(
|𝐶 | + 1

𝐷𝐹 (𝑡 ) + 1

)
+ 1 (4)

𝑇𝐹–𝐼𝐷𝐹 (𝑡, 𝐷 ) = 𝑆𝑢𝑏𝑙𝑖𝑛𝑒𝑎𝑟𝑇𝐹 (𝑡, 𝐷 ) × 𝐼𝐷𝐹 (𝑡 ) (5)

Fig. 7. TF–IDF variant used in DDoS2Vec’s process.

Local weighting. Equation (1) is the most basic form of TF, which counts the number of times a

word occurs in a document. We then account for the length of the document by dividing the count

by the document’s length (to avoid longer document bias). We also use a sublinear (logarithmic)

scaling function indicated in Equation (2), as a word’s importance to a document is unlikely to

scale linearly — especially when it indicates generic flow records and is repeated heavily during

Algorithm 1.

Global weighting. IDF is used to weigh how important a word is across the corpus. The

intuition is that a word that occurs in many documents is less important than a word that occurs

in fewer documents. Equation (4) differs from the ordinary IDF equation (log

(
|𝐶 |

𝐷𝐹 (𝑡 )

)
) by adding

one to the value in case the word is observed in every document; else, it would be ignored due to

𝐼𝐷𝐹 (𝑡) = 0,𝑇 𝐹–𝐼𝐷𝐹 (𝑡, 𝐷) = 𝑆𝑢𝑏𝑙𝑖𝑛𝑒𝑎𝑟𝑇 𝐹 (𝑡, 𝐷) × 0 = 0. One is also added to the numerator and

denominator to avoid a zero division if an unseen word is observed, i.e. an Out-Of-Vocabulary

(OOV) issue post-training. The effect of this is if a document was observed containing one of every

word in the corpus’s vocabulary set.

From a corpus into a document-termmatrix. For a document 𝐷 and a corpus𝐶 , we calculate

𝑇𝐹–𝐼𝐷𝐹 (𝑡, 𝐷) where 𝑡 is every word in the ordered vocabulary𝑉 of𝐶 . The order of the vocabulary

must be consistent as it is used to indicate the columns of the full document-term matrix. The

result is a vector representation ®𝑣 of 𝐷 with |𝑉 | dimensions. We repeat this process for every

document in 𝐶 to create a document-term matrix𝑀 , where𝑀 has |𝐶 | rows and |𝑉 | columns; thus,

the value of𝑀𝑡,𝐷 is the TF–IDF value of the word 𝑡 in document 𝐷 . Once𝑀 is created, we conduct

L2 normalisation
6
for each ®𝑣 in 𝑀 , e.g. | |®𝑣 | |2 =

√︃
𝑣2
1
+ 𝑣2

2
+ 𝑣2

3
+ · · · + 𝑣2|𝑉 | . That has the effect of

cancelling out the document length’s effect, as we are primarily interested in which potential

(DDoS or otherwise) characteristics documents represent, not their lengths.

TF–IDF does not consider word order. A major limitation of TF–IDF is that it does not

consider word order. This is an immediate problem for us, as the order of words is vital in our

context because they represent flow record information over time (a reminder that Algorithm 1

orders document contents if the flow records are sorted by ascending timestamps). Newer NLP

techniques, e.g. word embedding techniques (Word2Vec [31] and Doc2Vec [24]), can consider word

order or at least word proximity, but TF–IDF does not consider the order of words.

Introducing 𝑛-grams into vocabularies. We resolve that issue by generating 𝑛-grams (a

sequence of 𝑛 words) and using them as new words, contributing to a corpus’s vocabulary. For

6
Also referred to as Euclidean normalisation.
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example, in Table 4, document “192.168.1.70” contains the words “53->” and “->58394” that indicate

source port and destination port information, respectively, from what is actually one flow record.

TF–IDF would not fundamentally retain the context, but we can generate the bi-gram “53->->58394”

and add it as a new word into that document (the insertion position is inconsequential). This step

is conducted before the TF–IDF process, creating the document-term matrix with the new 𝑛-gram

words in each document.

Extreme dimensionality. The dimensionality of the document-term matrix is another signific-

ant concern because the document-term matrix is |𝐶 | × |𝑉 | in size. The value of |𝐶 | is the number

of destination IP addresses we observe in the flow samples, while the value of |𝑉 | is the number of

unique words in the corpus that were generated by Algorithm 1. For example, Algorithm 1 can

generate 2
17
words to represent source and destination ports alone. Generating 𝑛-grams to resolve

the word-order drawback will also drastically increase the number of unique words in the corpus.

Sparsity and dimensionality reduction. The vectors will only contain non-zero values where

the word is observed (vectors mostly contain zeros); hence, the document-term matrix will be

sparse, and the zeroed elements can be compressed. While it is possible to use sparse matrices for

downstream tasks, they are often more convoluted to manage than dense matrices. Additionally, the

dimensionality of the document-term matrix will still be too large for many downstream tasks, e.g.
classification and clustering. To resolve that, LSA uses truncated SVD to reduce said dimensionality.

A.3 Truncated Singular Value Decomposition (SVD)

M =


𝑥1,1 𝑥1,2 . . . 𝑥1,𝑛
𝑥2,1 𝑥2,2 . . . 𝑥2,𝑛

.

.

.

.

.

.
.
.
.

.

.

.
𝑥𝑚,1 𝑥𝑚,2 . . . 𝑥𝑚,𝑛


𝑚×𝑛

≈ 𝑈𝑟 × Σ𝑟 × 𝑉𝑇
𝑟 =

[ ↑ ↑ ↑
𝑢1 . . . 𝑢𝑘 . . . 𝑢𝑛
↓ ↓ ↓

]
×



𝜎1 . . . 0 . . . 0

.

.

.
.
.
. 0 . . . 0

0 0 𝜎𝑘,𝑘 . . . 0

.

.

.

.

.

.

.

.

.
.
.
. 0

0 0 0 0 𝜎𝑚,𝑛


×



←− 𝑉𝑇
1

−→
.
.
.

←− 𝑉𝑇
𝑘

−→
.
.
.

←− 𝑉𝑇
𝑚 −→


Fig. 8. Singular Value Decomposition (full rank if 𝑟 = 𝑛 and ignoring 𝑘 , or truncated if 𝑘 < 𝑛 and 𝑟 = 𝑘).

SVD explained. With SVD, we can decompose a document-term matrix𝑀 (with real numbers)

into three matrices:𝑈 , Σ, and 𝑉𝑇 (see Figure 8)
7
. 𝑈 indicates the left singular vectors, Σ indicates

the descending order singular values, and 𝑉𝑇 indicates the right singular vectors. Σ tells us of the

most (relatively) important singular vectors via larger singular values, allowing for dimensionality

reduction. Principal Component Analysis (PCA) is a closely associated technique to SVD, which

instead uses a covariance matrix. Both techniques require𝑀 to be centred (mean subtracted) first,

which removes the sparseness of𝑀 discussed previously in §A.2.

Truncating the SVD. The truncated SVD is often denoted as 𝑈𝑘 × Σ𝑘 × 𝑉𝑇𝑘 , where 𝑘 is the

number of singular vectors and singular values to retain. We can truncate the SVD by removing

(“truncating”) the least important singular vectors and singular values until 𝑘 of them remain;

hence, truncated SVD gives a low-rank approximation of𝑀 . It can be computed on sparse matrices,

which is vital for DDoS2Vec as the document-term matrix is sparse and extremely wide. This is the

final step of DDoS2Vec altogether, as it returns a dense matrix where the row is a potential attack

victim, and the columns approximate the victim’s received traffic.

7𝑉 should not be confused here with the earlier denotation of𝑉 in §A.2.
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A.4 Multi-Label Classification Metrics
Throughout this paper, we evaluate DDoS2Vec (among other approaches) using multi-label classi-

fication metrics. Here, we explain the metrics we use and how we compute them.

Main metrics. The main metrics we use are precision, recall, and F1 scores — all of which are

classic metrics in ML. Precision is the ratio of true positives to the total number of predicted

positives, recall is the ratio of true positives to the total number of actual positives, and the F1

score is the harmonic mean of precision and recall. We also report the exact match ratio 8
, which is

the ratio of the number of samples where the predicted labels exactly match the true labels to the

total number of samples. Unlike the other metrics, the exact match ratio is specific to multi-label

classification. However simple they are, the way to compute these metrics for a classification

approach is more complicated.

Averaging. In this work, we handle a highly imbalanced dataset. Because of that, we report both

micro and macro averages of the metrics. Macro-averaging computes the metric independently for

each label and then averages the metrics, meaning all class labels (DDoS attack characteristics)

have equal weight when gauging performance. Micro-averaging computes it globally by counting

the total predicted true positives, false negatives, and false positives. Macro-averaging is highly

sensitive to class imbalance, but micro-averaging is not; unfortunately, micro-averaging is also

sensitive to the majority classes and can give a false sense of strong classification performance.

We report both as we are interested in the approach that reports high values for both macro and

micro averages — a good ability to learn more subtle characteristics and learn the overall traffic,

respectively. We also summarise classification performance overall with an intermediate value, e.g.
the intermediate F1 score is the macro-averaged and micro-averaged F1 scores added together and

halved. An alternative would be to use sample weights (assigning a weight to each potential attack

based on the associated rules), which require a more complex scheme and is unnecessary for our

purposes.

A.5 Baseline Approaches
For the sake of comparison, we adopt three baseline approaches: (i) Doc2Vec, (ii) Word2Vec, and

(iii) a simple amplification port counting method. Unlike the first two, the third is a simplistic

approach we formulate to compare NLP with non-NLP approaches. We perform only simple

experimentation and tuning of DDoS2Vec-specific hyperparameters since a complete investigation

would be an effort on its own.

Doc2Vec. Doc2Vec [24] is an extension of Word2Vec [31] that can learn document vectors.

Doc2Vec requires a corpus, andwe use the same process adopted by DDoS2Vec (§4.1) for fairness.We

extract the document vectors from a trained model via Gensim [40] with the following configuration:

a vector size of 100, a context window size of 5 with the Distributed Memory learning model,

and 25 epochs. No minimum or maximum word counts are used, and the negative sampling

hyperparameters and others are kept at Gensim defaults.

Word2Vec. To provide a non-document baseline, following the approach of DarkVec [12], we

compare with Word2Vec [31]. We transform the document corpus (§4.1) into a series of long

sentences, where each word is the potential victim (destination IP address). The sentences are based

on the entries in Table 2, except the average packet size intervals are their own sentences as well.

The word vectors are retrieved from a trained model via Gensim with an equivalent hyperparameter

to the Doc2Vec setup, except that the context window size is 10 and the skip-gram learning model

is used with 15 epochs.

8
Also known as the subset accuracy.
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Non-NLP baseline. NLP techniques might be inadequate for DDoS characterisation compared

to non-NLP techniques. To avoid limiting the comparison, we formulate a simple baseline non-

NLP approach that leverages domain knowledge, denoted as Counter. We count the times each

amplification port is used for each potential victim (destination IP address). For each behaviour’s

source port in Table 2, we gather the number of flows, byte count, and packet count associated

with that port when it is the source of the traffic sent to the potential victim. That creates a row

where each column represents a source port and the associated flow, byte, or packet count (three

columns for each source port). We do the same for the generic behaviours, but their respective

columns represent a range of ports. Counter produces rows with 48 columns each. A caveat is that

this process entirely relies on domain knowledge, so it is unsuitable for unsupervised analysis due

to its restrictiveness.
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