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Abstract—This paper presents a scalable and efficient solution
for secure network design that involves the selection and verifi-
cation of network paths. The proposal addresses the challenges
related to compliance policies by introducing a Proof-of-Transit
(PoT) feasible implementation for path-aware programmable
networks. Our approach relies on i) a source routing mechanism
based on a fixed routeID representing a unique identifier per
path, which serves as a key for PoT lookup tables; ii) the
"in situ" that allows to collect telemetry information in the
packet while the packet traverses a path. The former enables
path selection with policy at the edge, while the later allows
to perform path verification without extra probe-traffic. A P4
programmable language prototype demonstrates the effectiveness
of this approach to protect against deviation attacks with low
overhead. The results show its scalability considering the protocol
overhead as the path length increases; a significant reduction
in network’s forwarding state for fat-tree topologies depending
on the workload per path (flows/path). Finally, experimental
results show a RTT comparison evaluation, the impact of PoT
computation, protection to path deviation and seamless path
migration keeping flow protection.

Index Terms—Path-Aware; Path Verification; Proof-of-transit;
IOAM; In-networking Programming

I. INTRODUCTION

In the current Internet architecture, routers determine how
a packet should be forwarded based on its destination. The
forwarding decision relies on each router’s local routing table.
Each entry in the routing table associates a reachable des-
tination with the next hop on the path. Unfortunately, in this
architecture, there is almost no means for path verification [1],
and an application can only assume that a packet will eventu-
ally reach the destination without selecting a specific path [2],
opening up numerous failures possibilities. For example, an
adversary may deviate the traffic violating the security policy,
or a path can be invalid due to a Forwarding Information Base
(FIB) corruption.

Internet Service Providers (ISPs) play a critical role in
ensuring reliable data delivery. To maintain the highest level of
service, ISPs must meet a Service Level Agreement (SLA). In

today’s rapidly evolving technological landscape, the demand
for Network Function Virtualization (NFV [3]) and modern
service chaining is increasing [4]. These new technologies
require compliance with specific policies or regulations that
specify the path that data must take through the network,
including the specific nodes it must pass through. Additionally,
ISPs must be able to prove that packets have passed through
a set of service functions to ensure the delivery of accurate
and secure data [5]. In short, ISPs must meet the SLA for
data delivery in their network and comply with regulations to
maintain the trust of their customers and remain competitive.

To meet these requirements, modern routing must have
two properties: path-awareness [2] and path-verifiability
[1]. Path-awareness allows endpoints to choose network paths
by exposing path information at the network or transport
layers. Path-verifiability provides Proof-of-Transit mechanisms
to securely confirm that all packets within a given path passed
through the intended nodes.

In this paper, we examine two concepts: (i) Strict Source
Routing (SSR), where a source node adds a route label
in the packet header to specify all the nodes in an end-to-
end path [6]; and (ii) In situ Operations, Administration,
and Maintenance (IOAM), which collects operational and
telemetry information in the packet while the packet traverses
a path [7]. The former enables path selection and reduces
the control signaling and latency related to path setup [6],
while the later allows to perform path verification without extra
probe-traffic [5].

Our proposal, called PoT-PolKA, is a novel lightweight and
scalable in-situ PoT approach for path-aware programmable
networks that combines the SSR provided by Polynomial Key-
based Architecture (PolKA) [6] with a new version of the PoT
mechanism introduced by a IETF RFC draft [5] based on the
Shamir’s secret sharing scheme [8].

As shown in Fig. 1, the first part of our design relies on the
semantic of PolKA source routing that specifies a routeID,
which is decoded at each node by a polynomial modulo
operation for packet forwarding. This routeID expresses the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3389457

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Waikato. Downloaded on May 14,2024 at 02:04:52 UTC from IEEE Xplore.  Restrictions apply. 



2

SecretController

SOURCE DESTINATION

ROUTE_ID

CORE FABRIC

Fig. 1: PoT-PolKA Overview

entire path for the packet, i.e., not its destination address,
but how to traverse each node until it reaches the destination.
Moreover, this unique routeID, unchanged throughout the path,
serves as a key for PoT table lookup to support the path
verification.

The second part of our design is devoted to path-verifiability
for which a shared secret is distributed by a Controller to the
nodes in the path through a secure channel, as depicted in Fig.
1. At the ingress edge, metadata is added to in-situ header, and
a cumulative number is updated at each hop. At the egress
edge, the verifier node checks if the cumulative number in the
packet header matches its secret.

In comparison to the IETF RFC Draft [5], this work offers a
combined SSR and packet-path binding approach with PolKA,
which allows aggregation of flows and avoids to store per-flow
state on routers. This represents a major paradigm change,
since the edge node1 is now able to select route labels that
represent not only paths, but also the PoT metadata associated
to the respective paths. Therefore, this ability to bind all this
information to a route label enables agile reconfiguration of
paths and policies by changing a single entry at a source
or edge node. Furthermore, our work introduces Mersenne
numbers [9] for a feasible implementation in programmable
switches of the modulo operations required by the Shamir
mechanism. To the best of our knowledge, this is the first
open-source implementation of PoT with Shamir mechanism
using P4.

As proof-of-concept, a prototype is built for PoT-PolKA
network (edge and core nodes) developed in P4 programmable
language. For validation, PoT-PolKA scalability analysis is
presented for different workloads, also presenting lower over-
head even when the path length increases. For performance
benchmarks, experimental results are carried out in Mininet
emulated environment, showing PoT-PolKA low overhead to
provide path migration keeping flow protection and protection
against traffic deviation attacks.

II. BACKGROUND AND RELATED WORKS

This section describes the definitions, problem statement,
background, and related works for our proposal.

1Depending on the context, the edge node may represented by an endpoint,
such as a virtual switch or a smartNIC in a server, a hypervisor, a top-of-rack
(ToR) switch, or a ingress domain gateway.

A. Definitions

Our proposal is built upon some important concepts that are
defined as follows:

Proof-of-Transit (PoT): it is a security mechanism that uses
cryptography for verifying the path through which a packet
was forwarded [5], in contrast to conventional traceroute
solutions. PoT is also known as path verification [1], which
enables the destination to secure the metadata used to retrieve
packet trajectories.

In-situ: it means that the Operations, Administration, and
Maintenance (OAM) information is collected within the packet
while the packet traverses a network domain, rather than send
extra packets dedicated to OAM [7].

Path-aware networks: networks that expose path informa-
tion and allow endpoints to select the specific path that the
packet will traverse [2].

Programmable networks: networks that allow to decouple
data and control plane configuration from network hardware
by using application programming interfaces (APIs).

P4 language: it is a high-level language for programming
the data plane of network devices in a protocol-independent
manner [10]. Differently from traditional switches, the data
plane functionality in P4 is not defined beforehand (e.g.,
match-action tables with fixed protocol columns), but is de-
scribed by a program.

Source routing (SR): the routing path is determined at the
source and the path computation only needs to be done once
for each packet. The most common example of SR is Port
Switching and this work adopts PolKA SR (more details in
Section II-C) [6].

Secret Sharing Scheme (SSS): it is a method for dividing
a secret into multiple shares or parts in such a way that
the original secret can only be reconstructed after a certain
number of these shares are combined. Examples of SSS are:
SSSS (Shamir Secret Sharing Scheme), TSS (Threshold Secret
Sharing), and LSSS (Linear Secret Sharing Schemes). In this
proposal, we adopt the SSSS (see Section II-D).

Mersenne numbers: it is a class of integers closely tied
to the field of number theory and prime numbers [9]. In
Section II-D, we explain how we explore Mersenne numbers
to enable the implementation of SSSS in P4 switches.

B. Problem Statement, Scope, and Security assumptions

In this paper, we want to answer the following research
question: How to prove that a traffic flow follows the correct
path for path-aware programmable networks? We address
this research question by investigating the feasibility of a
lightweight and scalable in-situ Proof-of-Transit approach. A
path validation solution involves: (i) securing route propaga-
tion and authentication in the control plane (e.g., RKPI and
BGPSec), and (ii) enforcing and verifying the correct transit
of traffic in the data plane. The focus of our work is in the
path verification, but it can benefit from several related works
to implement a full path validation scheme in future works
[1]. Path enforcement, route authentication and the discovery
of path properties [2] are important security aspects [1], but
they are out of the scope of this paper.
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Our assumption for the adversary model is that a network
attacker is able to deviate the traffic violating its security
policy, which leads to forwarding inconsistencies (i.e., path
deviation attacks) described in [1] as follows:

Skipping: Refers to a malicious routing behavior, wherein
a router redirects a packet, intentionally bypassing one or
more intermediary routers that are supposed to be part of the
designated path. This behavior is depicted in Fig. 2, where,
for instance, the packet avoids router 3 and proceeds along the
alternative route, passing through the path 1→ 2→ 4→ 5.

Addition: The packet temporarily diverges from the orig-
inally intended path and subsequently rejoins it. During this
process, the packet may traverse one or more routers that were
not initially part of the expected route. A visual representation,
in Fig.??, with the altered path: 1→ 2→ 6→ 3→ 4→ 5.

Path detour: Malicious router 𝑅1 causes a packet to deviate
from the intended path, but later it returns to the correct path.
Partial detour is illustrated in Fig. 4, where the packet deviates
from some but not all routers (path 1→ 2→ 6→ 7→ 4→
5). Complete detour is shown in Fig. 5.

21 3 4 5

Fig. 2: Skipping

21 3 4 5

6

Fig. 3: Addiction

21 3 4 5

6 7

Fig. 4: Partial Detour

21 3 4 5

7 86

Fig. 5: Complete Detour

PoT prevents forgery and adulteration; an attacker cannot
maliciously create a fake PoT or modify a legitimate one.
Furthermore, a legitimate node that is part of the PoT protocol
cannot disguise itself as another node along the way. Unfor-
tunately, no scheme can provide any guarantees for malicious
routers: if malicious router 𝑅𝑖 publishes its secret key, another
malicious router 𝑅′

𝑖
could perform cryptographic operations on

a packet without traversing 𝑅𝑖 . Besides, under the control of
attackers, compromised routers may discard or detour packets.
Moreover, the PoT mechanism discussed in this paper does not
verify the order in which nodes were traversed, i.e., it does
not detect where packets are being drifted from the selected
path. However, it can be extended to enable Ordered Proof
of Transit with symmetric masking between the nodes, as
described in [11]. Also, other performance metrics such as the
per-hop delay, and the load of each network interface might
be included in future work.

We envision our proposal can be applied in different con-
texts where the information regarding the underlying network
is available: (i) networks that are owned and managed by
the same operator, as datacenter networks; (ii) networks that
share information about their interior topology with each
other in some type of trust relationship; or (iii) application-

Fig. 6: Example of PolKA SR.

layer services like ALTO [12], which use such information to
perform better-than-random selection of the endpoints.

A practical application is the problem of detecting and
troubleshooting Equal-Cost Multi-Path (ECMP) [13] paths.
This problem remains a big challenge that faces many opera-
tors [14]. ECMP typically distributes traffic to all available
paths in a round-robin fashion, but FIB corruption or FIB
misconfiguration at any node is one among many issues that
can happen and may lead packets to follow a non ECMP Path.
Ideally, a PoT allows to detect the currently available ECMP
paths, being able also to know whether packets are following
an ECMP Path or not.

C. PolKA Source Routing

Related works investigated the benefits of SR over tradi-
tional table-based routing, such as reduction of network states
and optimal use of network capacity [15]. The most traditional
way of executing SR is Port Switching, in which the route label
represents a ordered list of output ports (or network addresses)
and each hop executes the forwarding operation as a pop of the
first element of the list [15]. As a consequence, Port Switching
needs to update the route label in the packet for each hop.

On the other hand, PolKA SR explores the residue number
system (RNS) with Galois field (GF) polynomials of order 2 to
derive the route label, which remains unchanged throughout all
the path [6]. In this scheme, at any core node, the output port
(portID) is given by the remainder of the binary polynomial
division (i.e., a mod operation) of the route identifier (routeID)
of the packet by the node identifier (nodeID). The polynomial
mod operation is enabled in programmable switches by the
reuse of the cyclic redundancy check (CRC) hardware [6].

This section presents the necessary background to under-
stand how PolKA is used as the routing method of PoT-PolKA
to bind paths to its respective PoT metadata. Since the route
label in PolKA remains the same along the path, it can be
used as an index for table lookups, allowing flow aggregation
and reducing per-flow state in the network.

Consider a packet should be routed via a selected path, rep-
resented by N core nodes and their respective output ports. Let
S = {𝑠1 (𝑡), 𝑠2 (𝑡), . . . , 𝑠𝑁 (𝑡)} be the multiset of the polynomials
representing the nodeIDs of the nodes in this path. The set
S must be composed of pairwise co-prime polynomials, and
satisfy the condition 𝑑𝑒𝑔𝑟𝑒𝑒(𝑠𝑖 (𝑡)) ≥ log2 (𝑛𝑝𝑜𝑟𝑡𝑠), where
𝑛𝑝𝑜𝑟𝑡𝑠 denotes the number of ports in the node. For simplicity,
we assume that 𝑠𝑖 (𝑡) are irreducible polynomials. Let O =
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{𝑜1 (𝑡), 𝑜2 (𝑡), . . . , 𝑜𝑁 (𝑡)} be the multiset of 𝑁 polynomials,
where 𝑜𝑖 (𝑡) represents the output port for the packet at the
core node 𝑠𝑖 (𝑡), for 𝑖 = 1, 2, . . . 𝑁 , satisfying the condition
that 𝑑𝑒𝑔𝑟𝑒𝑒(𝑠𝑖) > 𝑑𝑒𝑔𝑟𝑒𝑒(𝑜𝑖). For instance, if the output port
polynomial is 𝑜𝑖 (𝑡) = 1 · 𝑡2 + 1 · 𝑡, it maps the port 110 and the
packet is forwarded to port label 6 at node 𝑠𝑖 (𝑡). Based on the
definition of the path represented by 𝑆 and 𝑂, the Controller
calculates the routeID using the polynomial CRT [6] as the
polynomial 𝑅(𝑡) that satisfies:

𝑅(𝑡) ≡ 𝑜𝑖 (𝑡) mod 𝑠𝑖 (𝑡), 𝑓 𝑜𝑟 𝑖 = 1, 2, . . . 𝑁 (1)
The algorithm complexity for computing 𝑅(𝑡) is O

(
𝑙𝑒𝑛(𝑀)2

)
[6], where 𝑀 (𝑡) = ∏𝑁

𝑖=1 𝑠𝑖 (𝑡). The routeID is embedded in the
packet by the edge, and each core node calculates the output
port as the remainder of the euclidean division of the routeID
in the packet by its nodeID: 𝑜𝑖 (𝑡) = < 𝑅(𝑡) >𝑠𝑖 (𝑡 )

Fig. 6 shows an example for a path composed of three core
nodes, which received their nodeIDs from the Controller in
a network configuration phase: 𝑠1 (𝑡) = 𝑡 + 1 = 11, 𝑠2 (𝑡) =

𝑡2 + 𝑡 + 1 = 111, 𝑠3 (𝑡) = 𝑡3 + 𝑡 + 1 = 1011
Considering the path 𝑠1 → 𝑠2 → 𝑠3, the output port set

𝑂 is composed by the polynomials: 𝑜1 (𝑡) = 1, 𝑜2 (𝑡) = 𝑡 =

10, 𝑜3 (𝑡) = 𝑡2 + 𝑡 = 110. For this example, the routeID,
calculated according to the polynomial CRT, is 𝑅(𝑡) = 10000.
The Controller may proactively compute this 𝑅(𝑡) or calculate
it when the first packet of a flow arrives. To configure the path,
the Controller installs flow entries in the edges, which embed
the routeID 10000 into the packets. Then, each node can
calculate its portID by dividing the routeID of the packet by
its own nodeID. For example, the remainder of 𝑅(𝑡) = 10000
divided by 𝑠2 (𝑡) = 111 is 𝑜2 (𝑡) = 10 (port label 2).

D. Shamir’s Secret Sharing Scheme and Mersenne numbers

SSSS provides a secure and efficient threshold method based
on polynomial interpolation over finite fields (using the La-
grange Interpolation Formula [16]) for sharing a secret among
a group of participants [8]. Firstly, in a share distribution
phase, it distributes a limited number of 𝑛 shares. Then, in
a secret reconstruction phase, it requires at least the threshold
number of 𝑡 shares to reconstruct the secret.

In practice, a secure secret sharing scheme is one where
individuals possessing fewer than (t) shares have no advantage
over those with zero shares in terms of their knowledge
about the secret. SSSS adheres to this criterion and achieves
information-theoretical security, meaning that it cannot be
compromised by an attacker, even with unlimited compu-
tational resources [5]. On the other hand, TSS represents
a more simplistic form of secret sharing [8], where the
threshold (t) equals the total number of participating parties,
resulting in the secret being fully disclosed to every party.
This approach, although straightforward, lacks security since
any compromised part immediately exposes a portion of the
secret. Consequently, TSS is generally considered unsafe for
safeguarding confidential information [17].

Although the basic PoT problem could be theoretically
solved with a more simplistic secret sharing scheme if all
the nodes are selected (i.e., 𝑡 = 𝑛), we envision to exploit
the particular properties of SSSS to leverage advanced PoT

for probabilistic telemetry. The reasoning is that existing
telemetry techniques incur high overheads due to requiring
perfect telemetry information, but most applications do not
required to know all of the per-packet-per-hop information that
INT collects [18]. Thus, in future works, we plan to extend
this current PoT proposal as follows: (i) for each packet of a
flow, collect telemetry information of a random subset of any
𝑡 nodes from the 𝑛 nodes that compose a path; (ii) use SSSS
to prove that the packet correctly transversed 𝑡 nodes of the
selected path; and (iii) reconstruct the probabilistic telemetry
information to prove sufficient network coverage.

Therefore, considering its superior security robustness and
flexibility, SSSS was selected as the best candidate to enable
a broader PoT solution. Nonetheless, SSSS algorithm requires
integer modulo operations that may not be natively supported
on the data plane of current programmable switches. To enable
a feasible implementation of SSSS using the P4 language, we
propose a technique to calculate the modulo operation with
Mersenne numbers [9], which follow the pattern (2𝐵) − 1.

A number modulo a Mersenne number can be calculated
by a shift bitwise operation (<<). Algorithm 1 shows how
the calculation of 𝑘 𝑚𝑜𝑑 𝑝 can be executed with elementary
operations, where 𝑝 is a Mersenne number, k is smaller than
(1 << (2∗𝐵)) −1, and 𝐵 is the power of two of the Mersenne
number ((2𝐵) − 1) 2. To clarify, assuming that 𝑝 = 31 𝐵 =

5, it means that k should be smaller than (1 << 10) − 1 =

100000000002 − 12 = 1024 − 1 = 1023.

Algorithm 1: Modulo Mersenne Number
Data:
𝑘 - Input integer
𝑝 - Integer value
𝐵 - Integer value
Result:
𝑖 - Integer value

1 𝑖 ← (𝑘&𝑝) + (𝑘 ≫ 𝐵);
2 if 𝑖 ≥ 𝑝 then
3 𝑖 ← 𝑖 − 𝑝;

4 return 𝑖;

E. Related Works

In this section, we review the literature considering the
related works in Proof-of-Transit (PoT), but also the recent
efforts towards PoT standardization.

Regarding the PoT related works, ICING [19] relies on
aggregate message authentication codes (MAC [20]) and self-
certifying names to enforce path consent and path compliance.
Despite its linear network state with respect to path length,
overhead is high with a proof of consent from the nodes in the
path. Besides, its verification needs a variable header stack (list
of on-path nodes), imposing complexity for implementation.

2https://ariya.io/2007/02/modulus-with-mersenne-prime
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Different from ICING, OPT [21] does not include the list
of on-path nodes in the packet header. OPT assumes that all
nodes trust the source 𝑆, and each on-path node 𝑁𝑖 generates
a shared symmetric key 𝑘𝑖 with 𝑆. OPT refers to secrets as
origin and path validation (OPV); it allocates one 𝑂𝑃𝑉𝑖 field
for each 𝑁𝑖 in the packet header with 128 bits each. Although
it imposes less complexity compared to [19], it also requires
variable header size (on-path 𝑂𝑃𝑉𝑖). Extended-OPT [22] is
a variant of OPT that suggests to keep the same complexity
when nodes do not trust the source.

Orthogonal sequence verification (OSV) [23] follows the
same design principle as OPT, but with lighter orthogonal
sequences. OSV also relies on a path validation field (PVF)
and an original validation field (OVF) per on-path node, but
achieves faster computation of those fields. PPV [24] takes
a different approach with probabilistic path validation. Its
premise is that each packet does not need to be marked by all
of the routers it visits (at most two routers along the forwarding
path). It is based on per-flow path validation, so that PPV
routers only mark packets with a certain probability.

In terms of stardardization efforts, there is a recent RFC in
IETF for IOAM deployment [7], that allows to use a variety
of data header fields (RFC 9197 [25]). More specifically to
POT, the IETF-draft [5] explores the Shamir’s secret sharing
scheme [8] to provide an in-situ PoT solution. The main
advantage with respect to the previous works is its lightweight
in-situ fingerprint [7] with a small cumulative signature and
low control plane overhead. However, this IETF PoT proposal
[5] has some drawbacks: (i) it depends on an integer modulo
operation that is not commonly supported in programmable
switches; (ii) if it uses traditional table-based routing, it still
requires large numbers of table entries, which restricts path
selection [6]; and (iii) it aggregates PoT policies per flow,
impacting the scalability of the PoT solution.

Table I shows a system design comparison, where the first
line refers to PoT IETF-draft [5] which depends on table-
based routing and has no path awareness. An alternative is to
replace table-based routing by Segment Routing [26] (line 2
of the Table I) in order to allow path selection, but, since it
represents the path as a list of nodes and updates this list on
each hop, it leads to a variable size header.

PoT-PolKA is presented as another design choice in Table I.
It is built on the same basis as the PoT IETF-draft, maintaining
the advantages related to the use of SSSS (lightweight in-
situ fingerprint and low control plane overhead). On the other
hand, it introduces the use of source routing in combination
with PoT, which enables the edge to select the paths and
bind them to PoT metadata. Moreover, it has capabilities
that are unique compared to existing works: i) encoded path
information; ii) constant route identifier; iii) aggregation per
path not per flow; and iv) routeID overhead for the data
plane, instead of path tracing or variable size header. Besides,
PoT-PolKA offers a feasible implementation of the modulo
operation with Mersenne numbers that allows the deployment
on P4 programmable switches.

III. POT-POLKA PROPOSAL

This section introduces PoT-PolKA proposal, presenting
a comparative overview with the existing IETF RFC in
section III-A. In subsection III-B, a step-by-step design is
described with its implementation in P4 code.

A. Overview

The Fig. 7 presents the overview of IETF RFC Draft [5]
based on the Shamir secret sharing [8] method. The system pa-
rameters are provisioned by the controller and header metadata
is updated at every hop. At the egress node, the collected meta-
data allows to reconstruction of the secret for path verification.
Thus, PoT metadata (𝑟𝑛𝑑, 𝑐𝑚𝑙 = 0) is inserted into the packet
header at the edge. In node 𝐴, the PoT table is checked in order
to update the PoT metadata and its respective routing table to
forward the packet to the output link. The packet in transit
has its PoT metadata updated with its path tracing (𝐴, 𝑙𝑖𝑛𝑘1).
Then in node 𝐶, the process is repeated until the egress edge
node, updating the PoT metadata (𝑟𝑛𝑑, 𝑐𝑚𝑙 = 44) and stacking
its path tracing (𝐵, 𝑙𝑖𝑛𝑘4). The path verification is performed
at the egress edge that checks whether the collected meta-data
matches with the cumulative PoT metadata (𝑟𝑛𝑑, 𝑐𝑚𝑙 = 55).
It is important to note that each core node stores tables for
routing and PoT parameters.

On the other hand, PoT-PolKA design offers a path-binding
property by using a SSR approach based on PolKA [6], which
explores the Residue Number System (RNS) and Chinese
Remainder Theorem (CRT). PolKA encodes the path in a
routeID Fig. 8 using the RNS in contrast to the conventional
table-based, which depends on routing tables, or list-based rep-
resentations, which transports the path information “in clear”
inside the packet header. Then, PolKA core nodes use this
encoded route label to discover the output ports, by performing
the forwarding as an arithmetic operation: the remainder of
division of the routeID by its own nodeID. However, if a FIB
corruption occurs e.g. due to a fault injection by an attacker,
causing the remainder of division to forward the packet to
another output port, it would lead to path deviation attacks.
Thus, assuming she/he gets access to nodeID and portID,
despite PolKA first security barrier, this will not guarantee
the forwarding consistency, so that a PoT is required to protect
against packet path deviation.

PoT-PolKA solves problems in traditional PoT solutions
by proposing a design based on Shamir’s secret sharing
scheme and PolKA. It uses programmable P4 switches and
a small packet digest (PoT metadata) to ensure the path-
binding property. The PolKA routeID acts as a key to check
the nodes along the defined path and update the PoT metadata
at each hop. The egress node verifies if the packet traversed all
the specified nodes without the need for storing path tracing
information, as the routeID uniquely identifies the path.

Limitations of the approach and additional security analysis
can be seen in [5], with proofs of robustness for inter-node and
inter-packets passive attacks. However, the current solution
does not mitigate replay and pre-replay attacks, requiring a
mitigation mechanism to be included in future versions.
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Table I: PoT system design comparison

Method Routing Path
Info

Route
Identifier Policy Control Plane

Overhead
Data Plane
Overhead

Imp. Prog.
Switches

PoT IETF-draft [5] Table-Based
Routing In clear None Per flow Routing tables

PoT configs
Path tracing
PoT metadata No

PoT IETF-Draft deployed
with Segment Routing

List-based
Source Routing In clear Variable Per flow PoT configs Path tracing

PoT metadata No

PoT-PolKA PolKA
Source Routing Encoded Constant Per path PoT configs PoT metadata Yes
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Fig. 8: General Design of PoT-PolKA

B. Design

Fig. 9 explains the PoT-PolKA step-by-step. The design is
structured in three main steps: the computations at control
plane, configuration of the data plane, and, finally, the path
verification in the egress edge node.

1) Step1 : PoT Computation at the control plane: The PoT-
PolKA algorithm leverages on Shamir’s Secret Sharing scheme
[8]. The principle is to define a single secret, represented by
a polynomial, that is associated with a particular set of 𝑛 + 1
nodes that typically represent the path to be verified. Thus, a
polynomial of degree 𝑛 is selected as a secret at the control
plane. A set of 𝑛+1 points of this polynomial will be assigned
to 𝑛 + 1 nodes. Each of these 𝑛 + 1 points is called a "share"
of the secret.

For the edge nodes, a private polynomial (𝑃𝑜𝑙𝑦1) is selected
(see fig. 9), and its zero degree coefficient gives the secret (e.g.
𝑆𝑒𝑐𝑟𝑒𝑡 = 10). When a path is selected to be verified, for each
pair of edge nodes, (𝑥, 𝑃𝑜𝑙𝑦1 (𝑥) 𝑚𝑜𝑑 𝑀) must be computed.
For example, see the green box (𝑃1 = 16, 𝑀 = 31, 𝐵 = 5, 𝑆 =

10). Note that the parameters B and M refer to the introduction
of Mersenne numbers for a feasible implementation of SSSS in
programmable switches and represent a novelty in comparison
to the IETF RFC Draft [5].

For the core nodes, a public polynomial (𝑃𝑜𝑙𝑦2), as there
are 𝑛 + 1 nodes in the path, the polynomials (𝑃𝑜𝑙𝑦1,(𝑃𝑜𝑙𝑦2))
should be of degree 𝑛, is chosen and the verifier egress node

can reconstruct the 𝑛 degree polynomial (𝑃𝑜𝑙𝑦3) only when
all the points are correctly retrieved. The shares of the secret
are the points on (𝑃𝑜𝑙𝑦1) chosen for a path length of 4 nodes.
For example:
𝑥0 = 1, 𝑥1 = 3, 𝑥2 = 5, 𝑥3 = 7

𝑃𝑜𝑙𝑦1(1) = 16 = (𝑥0, 𝑦0) = (1, 16)

𝑃𝑜𝑙𝑦1(3) = 15 = (𝑥1, 𝑦1) = (3, 15)

𝑃𝑜𝑙𝑦1(5) = 7 = (𝑥2, 𝑦2) = (5, 7)

𝑃𝑜𝑙𝑦1(7) = 23 = (𝑥3, 𝑦3) = (7, 23)

Lagrange polynomial interpolation is used for secret re-
construction to a given set of points on the curve [5]. The
Lagrange Polynomial Constants (𝐿𝑃𝐶′𝑠) [16] are computed
by the Controller and communicated to the nodes. Since the
points are 𝑥0 = 1, 𝑥1 = 3, 𝑥2 = 5, 𝑥3 = 7 in the example,
(𝐿𝑃𝐶′𝑠) can be computed as follows:

𝐿𝑃𝐶 (𝑥0) = 0−𝑥1
𝑥0−𝑥1

∗ 0−𝑥2
𝑥0−𝑥2

∗ 0−𝑥3
𝑥0−𝑥3

= 105
48 𝑚𝑜𝑑 31 = 8

𝐿𝑃𝐶 (𝑥1) = 0−𝑥0
𝑥1−𝑥0

∗ 0−𝑥2
𝑥1−𝑥2

∗ 0−𝑥3
𝑥1−𝑥3

= 35
16 𝑚𝑜𝑑 31 = 23

𝐿𝑃𝐶 (𝑥2) = 0−𝑥0
𝑥2−𝑥0

∗ 0−𝑥1
𝑥2−𝑥1

∗ 0−𝑥3
𝑥2−𝑥3

= − 21
16 𝑚𝑜𝑑 31 = 11

𝐿𝑃𝐶 (𝑥3) = 0−𝑥0
𝑥3−𝑥0

∗ 0−𝑥1
𝑥3−𝑥1

∗ 0−𝑥2
𝑥3−𝑥2

= 45
48 𝑚𝑜𝑑 31 = 21

2) Step 2 : Data plane configuration: In this stage, the
parameters are assigned to a PoT table at the nodes. According
to PolKA routing [6], the routeID is the key (e.g., 𝑟𝑜𝑢𝑡𝑒𝐼𝐷 =
R1 = 10979360238159862843) needed to perform the actions
in the table. Also, the nodeIDs are generated and associated to
these nodes in the path (𝐶𝑜𝑟𝑒𝑁𝑜𝑑𝑒(1) = 65579, 𝐶𝑜𝑟𝑒𝑁𝑜𝑑𝑒(2)
= 65581, 𝐶𝑜𝑟𝑒𝑁𝑜𝑑𝑒(3) = 65593, 𝐶𝑜𝑟𝑒𝑁𝑜𝑑𝑒(4) = 65599)3.

It is worth noting that each parameter is kept secret by
individual nodes (i.e. precisely the points on 𝑃𝑜𝑙𝑦1, the share
of 𝑃𝑜𝑙𝑦2, 𝐿𝑃𝐶, 𝑀 , 𝐵). Only the constant coefficient (𝑅𝑁𝐷) of
𝑃𝑜𝑙𝑦2 is public, whereas 𝑥 value and non-constant coefficient
of 𝑃𝑜𝑙𝑦2 are secret.

On the edge (green table), they receive the information
about the secret (𝑆𝑒𝑐𝑟𝑒𝑡) and the fixed polynomial (𝑃𝑜𝑙𝑦1).
The core nodes receive respectively the pair (𝑋,𝑌 ) and the
𝐿𝑃𝐶 of the node, and the polynomial (𝑃𝑜𝑙𝑦2). There are some
conditions to choose the polynomials: Assuming that 𝐾1 is the
degree of 𝑝𝑜𝑙𝑦1, and 𝐾2 is the degree of 𝑝𝑜𝑙𝑦2 with 𝑁 nodes
in the core, we need 𝐾1 < 𝑁 and 𝐾2 < 𝑁 . Thus, as we use

3PolKA project with github implementation and examples can be found at:
https://github.com/nerds-ufes/polka/tree/main/mininet/pot-polka
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Fig. 9: PoT-PolKA design step-by-step

polynomials of minimum degree equal 2, the number of core
nodes must be at least 3. In Figure 7, 𝑝𝑜𝑙𝑦1 has degree 2 and
𝑝𝑜𝑙𝑦2 has degree 3, so the minimum number of core nodes
must be 4. Finally, the Mersenne 𝑀 with 𝐵 is assigned to all
nodes.

Data plane computation: In operation, each packet carries
its PoT metadata with a random value (𝑅𝑁𝐷), generated by
the edge, and a cumulative of secret (𝐶𝑀𝐿) that is initially
zero. The 𝐶𝑀𝐿 is updated by every core node by computing
the current CML with the Equation 2, which is implemented
in the P4 language (as detailed in Code 1):
action calc_cml(){

meta.new_cml = (meta.y + meta.poly2) * meta.lpc;
meta.new_cml = (meta.new_cml & meta.mersenne) +

(meta.new_cml >> meta.mersenne_b);
if (meta.new_cml > meta.mersenne){

meta.new_cml = meta.new_cml - meta.mersenne;
}
meta.new_cml = hdr.potPolka.cml + meta.new_cml;

}
apply { PoT-PolKA pipeline

if (hdr.potPolka.isValid()){
// Calculate egress port using PolKA SR
srcRoute_nhop();
// Table lookup to initialize PoT parameters
pot_param.apply();
// Calculate and update CML
calc_cml();
hdr.potPolka.cml = meta.new_cml;
// Set egress port
standard_metadata.egress_spec = meta.port;

}else{drop();}
}

Code 1: PoT-PolKA Data Plane Computation in P4 Code

𝐶𝑀𝐿 = (𝐶𝑀𝐿+ (𝑃𝑜𝑙𝑦1 (𝑋) +𝑃𝑜𝑙𝑦2 (𝑋)) ∗𝐿𝑃𝐶) 𝑚𝑜𝑑 𝑀 (2)

3) Step 3: Path verification: In the verifier node, the
verification is made by comparing if the 𝐶𝑀𝐿 in the packet
header and the 𝑉𝐸𝑅𝐼𝐹𝑌 value are equal (Equation 3):

𝑉𝐸𝑅𝐼𝐹𝑌 = (𝑆 + 𝑅𝑁𝐷) 𝑚𝑜𝑑 𝑀 (3)

As can be seen in Fig. 9, the 𝑅𝑁𝐷 remains fixed during
the path, but the 𝐶𝑀𝐿 is computed hop by hop. So, in the

egress edge, the PoT applies the equation 3. Given that the
𝑉𝐸𝑅𝐼𝐹𝑌 = 24 computed in the edge is equal to 𝐶𝑀𝐿 = 24
in the packet header, the path verification is confirmed.

IV. EVALUATION

The assessment methodology is structured in two parts.
Firstly, we focus on the scalability analysis (section IV-A)
by i) considering the protocol overhead in ICING [19] and
OPT [21] versus PoT-PolKA as the path length increases ; ii)
evaluating the reduction on network states achieved by PoT-
PolKA versus PoT-IETF. The comparison deals with fat tree
topologies with different sizes and varying the workload in
terms of flows per path.

For the second part of the evaluation (section IV-B), a pro-
totype of PoT-PolKA was developed as Proof-of-the-Concept
(PoC) and experiments were conducted within the Mininet
emulation platform. We start the experimental evaluation by a
comparative analysis measuring the RTT performed among
Baseline, PoT-PolKA, and PoT-IETF. The impact of PoT
computation is evaluated by the additional latency introduced
by PoT-PolKA compared to PolKA, as the number of hops
on the path increases. Then an experiment is devoted to
demonstrate the traffic deviation within the network, which
may potentially violate security policies, and PoT-PolKA’s
protection mechanism being able to detect the path deviation
(invalid path). The last experiment was designed to show a
seamless path migration keeping the flow protection under the
change of network conditions.

A. Scalability analysis
Path length

In order to analyze the protocols’ scalability as a function of
the path length, we take the same values from [21] of 256B
and 1024B packets size, varying the path length from 2 to
10 hops. Fig. 10 shows the comparison result. The increase
on path length adds more overhead to the packet header, for
both OPT and ICING. However, as expected, the PoT-PolKA
header remains the same with lower overhead than ICING and
OPT as the path length increases.
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Network state

For evaluation purposes, we assume that each rule (i.e.
network state) is a flow entry for exact matching at the
PoT table. So, for the IETF RFC draft, we have 𝑁 =
𝑓 𝑙𝑜𝑤𝑠_𝑝𝑒𝑟_𝑝𝑎𝑡ℎ ∗𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑝𝑎𝑡ℎ𝑠 ∗ 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ ∗2. For
PoT-PolKA, as it aggregates multiple flows that cross a path
avoiding to store per-flow state on routers, then the number of
network states is 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜 𝑓 _𝑝𝑎𝑡ℎ𝑠 ∗ 𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ ∗ 2.
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Fig. 11: Number of states for Fat-Tree topologies.

Fig. 11 presents a network state requirements comparison
between PoT-PolKA and the IETF draft PoT. We use fat-tree
topologies for different 𝐾 = 6, 8, 10 under a variable workload
(flows per path) from 1 to 10. The pod path lengths were
calculated for all combinations of nodes, either for intra or
inter pod. As can be seen, the heavier is the workload per
path, the greater is the reduction achieved by PolKA on the
total number of states. For example, for a fat-tree with 𝐾 = 10
and a workload of 6 flows per path, the reduction achieves
83,3% and 90% for 10 flows per path.
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Fig. 12: Linear Fabric Topolology

B. Experimental Evaluation

To evaluate the main functionalities of PoT-PolKA, we
developed a prototype in the software switch bmv2 sim-
ple_switch with the v1model architecture as the target. The
scenario of Fig. 12 shows a linear fabric topology with edge
and core nodes emulated in Mininet. The main objective
is to have an experimental PoC for PoT-PolKA validation.
The experiments´ goal is to compare the overhead of PoT-
PolKA proposal to the previous works, as the number of hops
increases in the core network (e.g., from 3 hops for path H1
→ H3 to 9 for path H1 → H10).

The physical setup consists of a server Dell PowerEdge
T430, with an Intel Xeon E5-2620 v3 2.40GHz processor and
64GB of RAM. We ran experiments within an Ubuntu 18.04.6
LTS. To build our emulated environment, we used Mininet 2.6
with a P4 compiler and bmv2 1.15.0.

RTT comparison

Fig. 13 shows a RTT comparison among a Baseline,
PolKA, PoT-PolKA, and PoT-IETF. Specifically, the table-
based packet forwarding is used as a baseline. PoT-PolKA
represents our solution applied to the linear topology varying
the path length (Fig. 12). Conversely, PoT-IETF was devised
using a table that incorporates the PoT mimicking the IETF
draft [5]. As can be seen in Fig. 13, there is a linear growth
with small variation on RTT. Notably, PoT-IETF shows a slight
disadvantage in comparison to PoT-PolKA due to the effect
of lookup table delay and PoT computation, while PoT-PolKA
increases RTT by 12% compared to Baseline due to its PoT
computation.
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Fig. 13: RTT for Baseline, PolKA, PoT-PolKA and PoT-IETF

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3389457

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Waikato. Downloaded on May 14,2024 at 02:04:52 UTC from IEEE Xplore.  Restrictions apply. 



9

3 4 5 6 7 8 9
Number of core hops

0

2

4

6

8

10

Th
ro

ug
hp

ut
 1

0M
bp

s

PoT-PolKA
PolKA

Fig. 14: Throughput between PolKA and PoT-PolKA

Impact of PoT computation

Comparing the PolKA vs. PoT-PolKA, we observe a small
increase on latency by PoT-PolKA (around 4% when the path
length is longer than 6). Throughput is essentially the same
for both (Fig. 14), although it is worth mentioning that this
is a relative value because the link rates were limited to 10
Mbps, due to bmv2 simple_switch processing capacity in the
mininet emulation.

Protection to path deviation

In Fig. 15, a network attacker is able to deviate the traffic,
violating the security policy. By using the prototype of PoT-
PolKA in the Mininet emulation, two flows are created at 𝑠𝑟𝑐
host: (i) a green line flow crossing 𝑆1 → 𝑆2 → 𝑆3 → 𝑆4
(from T=0s to T=40s); and (ii) a red line flow, deviated from
the intended path by the attacker, going over 𝑆1→ 𝑆5→ 𝑆4
(from T=20s to T=40s).

S1 S2 S4

S5src dst

S3

Attacker

Fig. 15: Path deviation attack

As shown in Fig. 16, at T=20s, a new flow of 3Mbps is
initialized and the aggregated flows at 𝑠𝑟𝑐 (blue line) increase
from 4Mbps to 7Mbps. However, this new flow was deviated
which leads to the red line at 3Mbps, whereas the orange
line representing the 𝑑𝑠𝑡 host remains at 4Mbps. Since the
egress edge node applied the PoT-PolKA verification, it drops
3Mbps of the aggregated flows, demonstrating the PoT-PolKA
protection against the path deviation attack.

Seamless path migration keeping flow protection

The purpose of this experiment is to provide a practical
illustration demonstrating the traffic engineering support for
PoT-PolKA while keeping the flow verification. In Fig. 17,
two paths are established from H1 to H2. Path 1 comprises
the following sequence of nodes: E1 - S1 - S2 - S3 - S4 - E2.
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Fig. 16: Throughput with PoT-PolKA protection
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Fig. 17: Topology for Path Migration

Conversely, Path 2 is constructed using the following sequence
of nodes: E1 - S5 - S6 - S7 - S8 - E2. The stars assigned to
the nodes in the fig. 17 are the measurement points to collect
the traffic so that we can plot the throughput from the switch
perspective.
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Fig. 18: Path Migration

In Fig. 18, we present the results of a path migration
scenario. Initially, an UDP flow was initiated from source
H1 to destination H2, following path 1. The traffic crosses
through switch S3 (green), which is a node on path 1, and
no traffic is crossing S7 (red). However, after 30 seconds, a
change in the flow path occurs at the network E1, resulting in
a modification of the routeID, which requires only an update
at the edge to map the flow to this new routeID. Thus, the
flow diverts away from S3 traversing now S7 (a measurement
node on path 2). Interestingly, for this case of low flow rate,
no packet loss was observed. This was due to the fact that
path migration only requires an update at the network edge,
as opposed to updates for all the switch tables along the path.
Particularly noteworthy is that the verification mechanism is
tailored to each routeID (designed per routeID), ensuring that
this new path corresponds to a valid route, allowing this flow
to seamlessly migrate reaching its destination.
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A final remark for this experiment, the proactive instrumen-
tation of switches for both paths, along with their respective
route-ids (which is the key value for the PoT switch table),
means that convergence time solely entails updating only at the
edge, remaining completely transparent. Nonetheless, if any
route-ids along the path had not been previously instrumented
at the switches, an update (at the switch PoT table(s)) would
have been necessary, resulting in additional time required for
routing convergence.

V. CONCLUSION

This paper introduces a novel PoT design for programmable
networks that leverages PolKA source routing [6] for strict
path selection and a modified version of PoT IETF RFC draft
[5] for path verification. The design integrates seamlessly with
P4 programmable switches, resulting in a scalable and efficient
implementation. The proposed solution is validated through
experiments performed using a software switch implementa-
tion and the Mininet emulation platform, evaluating metrics
such as RTT and throughput.

The proposal extends the IETF RFC draft [5], by intro-
ducing the Mersenne numbers for a feasible implementation
of Shamir Secret Sharing in programmable switches. This
is enabled by a fixed routeID that represents a unique path
in the administrative domain and is used as a key for the
PoT lookup table to support the path verification. Thus, we
can aggregate PoT policies by path with a reduction on the
number of network states. Furthermore, the PoT-PolKA header
consistently maintains its efficiency advantage over ICING and
OPT, demonstrating lower overhead as path length increases.

We envision as future work to devote efforts to deploy our
approach at P4 Tofino programmable switches [27], to include
path enforcement and validation functionalities, to explore PoT
with probabilistic telemetry, and to extend [28] for secure
multipath routing.
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